Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Interactive spoken document retrieval with suggested key terms ranked by a Markov decision process
 
  • Details

Interactive spoken document retrieval with suggested key terms ranked by a Markov decision process

Journal
IEEE Transactions on Audio, Speech and Language Processing
Journal Volume
20
Journal Issue
2
Pages
632-645
Date Issued
2012
Author(s)
Pan, Y.-C.
HUNG-YI LEE  
LIN-SHAN LEE  
DOI
10.1109/TASL.2011.2163512
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84255161628&doi=10.1109%2fTASL.2011.2163512&partnerID=40&md5=7f3f9c94077af499235cb90039d28d8e
Abstract
Interaction with users is a powerful strategy that potentially yields better information retrieval for all types of media, including text, images, and videos. While spoken document retrieval (SDR) is a crucial technology for multimedia access in the network era, it is also more challenging than text information retrieval because of the inevitable recognition errors. It is therefore reasonable to consider interactive functionalities for SDR systems. We propose an interactive SDR approach in which given the user's query, the system returns not only the retrieval results but also a short list of key terms describing distinct topics. The user selects these key terms to expand the query if the retrieval results are not satisfactory. The entire retrieval process is organized around a hierarchy of key terms that define the allowable state transitions; this is modeled by a Markov decision process, which is popularly used in spoken dialogue systems. By reinforcement learning with simulated users, the key terms on the short list are properly ranked such that the retrieval success rate is maximized while the number of interactive steps is minimized. Significant improvements over existing approaches were observed in preliminary experiments performed on information needs provided by real users. A prototype system was also implemented. © 2011 IEEE.
Subjects
dialogue system; Spoken document retrieval (SDR)
SDGs

[SDGs]SDG16

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science