Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Photonics and Optoelectronics / 光電工程學研究所
  4. Simulation of Interdigitated Back Contact Solar Cells and Experimental Analysis of Emitter Recombination Current
 
  • Details

Simulation of Interdigitated Back Contact Solar Cells and Experimental Analysis of Emitter Recombination Current

Date Issued
2015
Date
2015
Author(s)
Tsai, Zheng-Gang
URI
http://ntur.lib.ntu.edu.tw//handle/246246/273012
Abstract
In this thesis, the characteristics of emitter of n-type Si-based solar cells are investigated and the enhancements of n-type Si-based interdigitated back contact (IBC) solar cells are also studied. The goals of this thesis are to optimize the parameter of solar cells by numerical simulations using technology computer aided design (TCAD) simulator to provide concepts to improve the performances of cells. Firstly, we vary the surface recombination velocity (SRV), the bulk lifetime and emitter ratio. Then, we simulate the process of the ion implantation by numerical simulators using TCAD simulator and optimize the parameter in the fabrication, such as the implanted dose and annealing temperature. Secondly, we combine the advantages of IBC solar cells and heterojunction with intrinsic thin films (HIT) solar cells to get the higher efficiency of solar cells, called interdigitated back contact silicon heterojunction (IBC-SHJ) solar cells. To optimize the efficiency, we simulate the design of the structure and the bandgap of p, i and n-type amorphous Si layers by using TCAD simulator. Finally, we discuss the characteristics in the emitter of n-type Si-based solar cells. A p+/n/p+ symmetrical structure is fabricated by ion implantation tool. We measure it to analyze the characteristics of the emitter by means of Quasi-Steady-State Photo-conductance (QSSPC) method. It is helpful to improve the efficiency of solar cells by using the appropriate annealing condition and the optimized wet chemically etching condition since the damage is introduced by ion implantation process.
Subjects
heterojunction
interdigitated back contact solar cells
ion implantation
emitter saturation current
quasi-steady-state photo-conductance
thermal annealing
Type
thesis

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science