Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Efficient Algorithms for some Heaviest Subsequence Problems
 
  • Details

Efficient Algorithms for some Heaviest Subsequence Problems

Date Issued
2007
Date
2007
Author(s)
Sung, Chien-Chun
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/53750
Abstract
最長共同子序列(LCS)問題以及最長遞增子序列(LIS)問題是兩個很古典的 問題,許多有趣的問題都從這兩個問題延伸。在計算生物學上,許多的研究顯示 出在兩個或多個基因組序列上存在一些特定的關係。在最長遞增共同子序列 (LCIS)問題上,他們想要在所有共同遞增子序列中,找出最長的那一段。在 一套完全基因組序列比對的工具MUMmer 中,最長共同遞增子序列問題可以用 來找出最有可能性的最大唯一配對子字串 (MUM) 群,並且在相同的順序。在 MUMmer 中每一個MUM 給予相同的權重,我們提出一個較一般性的表達,使 得這些MUMs 有不同權重。 第一個部份我們介紹最重遞增子序列(HIS)問題。給予一個長m的序列以 及一個權重函數,我們想要找出遞增子序列而且擁有最重的權重總和,我們提出 了一個演算法可以在O( mloglogm+Sort(m))的時間以及O(m)空間計算出來。 第二個部份我們介紹最重共同子序列(HCS)問題。有兩條序列分別長m 及n 且m>n,而在這兩條序列當中,如果有相同元素配對發生,則在他們之間 存在一個權重,在此我們將描述一個由Jacobson 提出的演算法。 第三個部份我們提出了一個新問題叫做最重共同遞增子序列(HCIS)問題, 這問題是最長共同子序列問題的延伸。我們先提出一個動態配置演算法可以在 O(mnlogn)的時間以及O(mn)的空間找出最重共同遞增子序列。之後我們更提出 了一個演算法可以在O(rnloglogn)的時間以及O(mn)的空間,其中r 是兩序列間 的配對數。 最後,我們不允許元素間重疊,並創造了新問題:保存最重子序列(CHS) 問題及保存最重遞增子序列(CHIS)問題,它們均可在O(mlogm)的最佳時間解 決。
We study some variants of the longest common subsequence (LCS) and the longest increasing subsequence (LIS) problems. In computational biology, some researches have shown that there are some relationships between two common genes from two or more different genomes. In the longest common increasing subsequence (LCIS) problem, they want to find one of the common increasing subsequences with maximum length between two different sequences. The LCIS problem is to find the longest maximal unique matching (MUM) substrings in the same order among three or more genomes in a whole genome alignment tool MUMmer and each MUM has weight one. We give a more general formulation for this problem such that each MUM has a different weight. In the first part, we study the heaviest increasing subsequence (HIS) problem, and propose an O(mlog logm+ Sort(m)) time and O(m) space algorithm for it, where m is the length of the input sequence and Sort(m) denotes the time required to sort a sequence with length m. In the second part, we study the heaviest common subsequence (HCS) problem and describe the algorithm proposed by Jacobson et al [17]. In the third part, for two sequences of length m and n, we define a new problem called the heaviest common increasing subsequence (HCIS) problem as an extension from the LCIS problem. We present an algorithm for computing the HCIS in O(mn log n) time and O(mn) space. In addition, we propose another algorithm in O(rn log log n) time and O(mn) space, where r is the number of the common elements. Finally, we add a new conserved variation, and define the conserved heaviest subsequence (CHS) and conserved heaviest increasing subsequence (CHIS) problem, which can be solved in O(mlogm) time.
Subjects
最重共同子序列
最重遞增子序列
最重共同遞增子序列
保存最重子序列
HCS
HIS
HCIS
CHS
Type
thesis

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science