Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Industrial Engineering / 工業工程學研究所
  4. Binary multi-layer classifier
 
  • Details

Binary multi-layer classifier

Journal
Information Sciences
Journal Volume
562
Pages
220-239
Date Issued
2021
Author(s)
Zeng H
ARGON CHEN  
DOI
10.1016/j.ins.2021.01.085
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101820379&doi=10.1016%2fj.ins.2021.01.085&partnerID=40&md5=a601306e7a277ea57b1e75fe13096649
https://scholars.lib.ntu.edu.tw/handle/123456789/577100
Abstract
Binary decision trees (BDTs), where each node of the tree is split into two child nodes, are among the most popular classifiers. An alternative type of classification tree, namely, the multi-layer classifier (MLC), has been proposed to split the parent node into 1 or 2 classified child nodes and an unclassified child node at each layer. In contrast to the nodes in a BDT, only the unclassified node of the MLC can be further split. Though the use of MLC is plausible, it has not been widely applied due to a lack of theoretical investigations and thorough tests with real datasets. In this study, we attempt to lay a solid theoretical foundation for a simple MLC with a binary split, i.e., a split into only two nodes, namely, one classified and the other unclassified. Based on the theories developed, we propose a variance-ratio algorithm to construct tree models. The proposed algorithm is thoroughly tested with 40 datasets from well-known repositories. The results indicate that binary MLC models are easier to interpret than other models, achieve significantly better average classification performance than seven other BDT methods and construct fewer tree nodes than most other methods except CTree and NBTree. ? 2021 Elsevier Inc.
Subjects
Decision trees; Image coding; Trees (mathematics); Binary decision trees; Classification performance; Classification trees; Real data sets; Theoretical foundations; Theoretical investigations; Tree models; Variance ratio; Binary trees
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science