Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. Empowering Greenhouse Cultivation: Dynamic Factors and Machine Learning Unite for Advanced Microclimate Prediction
 
  • Details

Empowering Greenhouse Cultivation: Dynamic Factors and Machine Learning Unite for Advanced Microclimate Prediction

Journal
Water (Switzerland)
Journal Volume
15
Journal Issue
20
Date Issued
2023-10-01
Author(s)
Sun, Wei
FI-JOHN CHANG  
DOI
10.3390/w15203548
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85175365111&doi=10.3390%2fw15203548&partnerID=40&md5=a4dd00ac0e10bc3dbd8d6b5aaed7073a
https://scholars.lib.ntu.edu.tw/handle/123456789/637275
URL
https://api.elsevier.com/content/abstract/scopus_id/85175365111
Abstract
Climate change has led to more frequent extreme weather events such as heatwaves, droughts, and storms, which significantly impact agriculture, causing crop damage. Greenhouse cultivation not only provides a manageable environment that protects crops from external weather conditions and pests but also requires precise microclimate control. However, greenhouse microclimates are complex since various heat transfer mechanisms would be difficult to model properly. This study proposes an innovative hybrid model (DF-RF-ANN), which seamlessly fuses three components: the dynamic factor (DF) model to extract unobserved factors, the random forest (RF) to identify key input factors, and a backpropagation neural network (BPNN) to predict greenhouse microclimate, including internal temperature, relative humidity, photosynthetically active radiation, and carbon dioxide. The proposed model utilized gridded meteorological big data and was applied to a greenhouse in Taichung, Taiwan. Two comparative models were configured using the BPNN and the Long short-term memory neural network (LSTM). The results demonstrate that DF-RF-ANN effectively captures the trends of the observations and generates predictions much closer to the observations compared to LSTM and BPNN. The proposed DF-RF-ANN model hits a milestone in multi-horizon and multi-factor microclimate predictions and offers a cost-effective and easily accessible approach. This approach could be particularly beneficial for small-scale farmers to make the best use of resources under extreme climatic events for contributing to sustainable development goals (SDGs) and the transition towards a green economy.
Subjects
back propagation neural network (BPNN) | dynamic factor | microclimate | random forest (RF)
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science