Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Applied Mathematical Sciences / 應用數學科學研究所
  4. Pseudo Maximum Likelihood in Hidden Markov Model
 
  • Details

Pseudo Maximum Likelihood in Hidden Markov Model

Date Issued
2016
Date
2016
Author(s)
Shih, Chu-Fu
DOI
10.6342/NTU201600665
URI
http://ntur.lib.ntu.edu.tw//handle/246246/277738
Abstract
Hidden Markov models are a fundamental tool in applied statistics, econometrics, and machine learning for treating data taken from multiple subpopulations. When the sequence of observations is from a discrete-time, finite-state hidden Markov model, the current practice for estimating the parameters of such models relies on local search heuristics such as the EM algorithm. A new method named as pairing method is proposed to serve as an initial estimate of the transition matrix and parameters in hidden Markov models. Under regularity conditions, it can be shown that EM leads to the maximum likelihood estimator by given a suitable initial estimate. However, there is no method of finding suitable initial points in hidden Markov model. Pairing method can provide a good initial parameter estimate which can expedite EM in terms of computing time.When the underlying state transition matrix is not taken into consideration, the marginal distribution will be a mixture distribution while only limited information on state transition matrix is kept for inference. In order to recover full information contained in the data on transition matrix, we utilize characteristics of stochastic matrix by enlarging the Markov chain to recover information governing dynamic of transition matrix. Consistent and asymptotic normal estimators of hidden transition matrix are provided.
Subjects
EM algorithm
hidden
Markov chain
mixing condition
maximum likelihood
mixture model
regime switching
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-105-R03246013-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):9269f1752317d39d4a2ab9dbd30c354b

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science