Ensemble recording system and development of telemetric technology for neural signals
Date Issued
2007
Date
2007
Author(s)
Chien, Chia-Nan
Abstract
Electrophysiological techniques could help us to understand the complex behavior of neural activities. The conventional field potentials (FPs) and multi-unit activities (MUAs) recording are to complement each other. Firstly, a hybrid multichannel system was proposed to record FPs and MUAs. The detail procedures of microelectrode specification determination were described, and a custom-made electrode for the acute mapping of cerebral cortex was constructed. Moreover, a three-stage signal-conditioning unit was designed that offered low noise, low cost and excellent line-driving capabilities. The parallel architecture of the filter stage, just before the analog-to-digital (A/D) converter card, allowed the MUAs and FPs to be recorded simultaneously without further signal processing. To obtain a precision map, a 64-channel high-speed A/D card and its software program were purchased, which allowed “pseudo-synchronous” acquisition among different channels. Finally, the practical application of this system in investigating cortical responses showed that it met the requirements of ensemble recording.
Secondly, a simple miniature telemetry system for neural recording from freely moving rats was described. It weighed only 1% of the body weight of an adult rat and shows no observable effects on the movement of the animal. Together with its long recording time (more than 38 h), its isotropic nature, which was essential for working with freely moving animals, offer further advantages. A frequency-modulation receiver with a flat frequency response down to 6 Hz had been designed for wide-spectrum recording of neural signals, allowed FPs recording. The detailed design considerations and methods for implementing the system could be valuable to other neuroscience laboratories.
Subjects
bio-telemetry
data acquisition
field potentials
multichannel
multi unit action potentials
Type
thesis
File(s)![Thumbnail Image]()
Loading...
Name
ntu-96-F89548032-1.pdf
Size
23.53 KB
Format
Adobe PDF
Checksum
(MD5):7e23a9658e7a37eaaddd5573c359428e