Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Biomedical Engineering / 醫學工程學系
  4. Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor
 
  • Details

Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor

Journal
NANO ENERGY
Journal Volume
31
Pages
575
Date Issued
2017
Author(s)
Lin, JH
Tsao, YH
Wu, MH
Chou, TM
ZONG-HONG LIN  
Wu, JM
DOI
10.1016/j.nanoen.2016.12.013
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/629291
URL
https://api.elsevier.com/content/abstract/scopus_id/85003881511
Abstract
Over the past decades, water pollution has been suggested as the leading factor to infectious diseases. There has been a worldwide concern to use photocatalysts to degrade organic pollutants in waste water. However, the requirement of light assistance in degradation process has limited the application of photocatalysts. In this paper, MoS2/PDMS nanocomposite was fabricated in order to overcome this problem. The results showed that MoS2/PDMS nanocomposite can provide a high degradation activity to purify the waste water without light assistance. The MoS2/PDMS nanocomposite preserved an activity of 67% toward dye Rhodamine B degradation even in the fourth cycling test. We found that the high degradation activity of MoS2/PDMS nanocomposite was based on the piezo-catalytic effect of single- and few-layers MoS2 nanoflowers in the nanocomposite. We also demonstrated that MoS2/PDMS nanocomposite was a useful material in the fabrication of nanogenerator to harvest waste water energy. Through the direct coating of MoS2/PDMS nanocomposite on a metal grid, electric outputs of 23 V and 13 mA/m2 can be generated when a water flow (20 mL/s) was passing the nanogenerator. In addition, when coating MoS2/PDMS nanocomposite on a flat electrode and placing it inside a water pipe, the nanogenerator could not only act as the source of electric output, but also as a self-powered sensor to locate the water passage route and/or the contamination areas in the waste water.
Subjects
Molybdenum disulfide; Piezo-catalytic effect; Energy harvesting; Self-powered sensor; Nanomaterials; TRIBOELECTRIC NANOGENERATOR; VISIBLE-LIGHT; CONTACT-ELECTRIFICATION; PHOTOCATALYTIC PROPERTIES; HETEROJUNCTION NANOWIRES; ENERGY-CONVERSION; WATER; COMPOSITE; DRIVEN; TRANSPARENT
Publisher
ELSEVIER SCIENCE BV
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science