Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. National Taiwan University Hospital / 醫學院附設醫院 (臺大醫院)
  4. Disease-free survival assessment by artificial neural networks for hepatocellular carcinoma patients after radiofrequency ablation
 
  • Details

Disease-free survival assessment by artificial neural networks for hepatocellular carcinoma patients after radiofrequency ablation

Journal
Journal of the Formosan Medical Association
Journal Volume
116
Journal Issue
10
Pages
765-773
Date Issued
2017
Author(s)
Wu C.-F.
Wu Y.-J.
PO-CHIN LIANG  
CHIH-HORNG WU  
STEVEN SHINN-FORNG PENG  
Chiu H.-W.
DOI
10.1016/j.jfma.2016.12.006
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/514221
Abstract
Background/Purpose Radiofrequency ablation (RFA) provides an effective treatment for patients who exhibit early hepatocellular carcinoma (HCC) stages or are waiting for liver transplantation. It is important to assess patients after RFA. The goal of this study was to build artificial neural network models with HCC-related variables to predict the 1-year and 2-year disease-free survival (DFS) of HCC patients receiving RFA treatments. Methods This study was a retrospective study that tracked HCC patients who received computer tomography-guided percutaneous RFA between January 2009 and April 2012. The numbers of total patients with 1-year and 2-year DFS were 252 and 179, respectively. A total of 15 HCC clinical variables were collected for the construction of artificial neural network models for DFS prediction. Internal validation and validation conducted using simulated prospective data were performed. Results The results showed that the model with 15 inputs showed better performance compared with the models including only significant features. Parameters for performance assessment of 1-year DFS prediction were as follows: accuracy 85.0% (70.0%), sensitivity 75.0% (63.3%), specificity 87.5% (71.8%), and area under the curve 0.84 (0.77) for internal validation (simulated prospective validation). For 2-year DFS prediction, the values of accuracy, sensitivity, specificity, and area under the curve were 67.9% (63.9%), 50.0% (56.3%), 85.7% (70.0%), and 0.75 (0.72), respectively, for internal validation (simulated prospective validation). Conclusion This study revealed that the proposed artificial neural network models constructed with 15 clinical HCC relevant features could achieve an acceptable prediction performance for DFS. Such models can support clinical physicians to deal with clinical decision-making processes on the prognosis of HCC patients receiving RFA treatments. ? 2017
SDGs

[SDGs]SDG3

Other Subjects
alanine aminotransferase; aspartate aminotransferase; aged; alanine aminotransferase blood level; Article; artificial neural network; aspartate aminotransferase blood level; cancer patient; cancer prognosis; cancer surgery; cancer survival; chemoembolization; clinical decision support system; computer assisted tomography; diagnostic accuracy; disease free survival; female; human; intermethod comparison; internal validity; liver cell carcinoma; major clinical study; male; medical record review; perceptron; predictive value; prospective study; radiofrequency ablation; receiver operating characteristic; retrospective study; sensitivity and specificity; simulation; survival prediction; catheter ablation; disease free survival; epidemiology; liver cell carcinoma; liver tumor; mortality; Taiwan; treatment outcome; validation study; x-ray computed tomography; Aged; Carcinoma, Hepatocellular; Catheter Ablation; Disease-Free Survival; Female; Humans; Liver Neoplasms; Male; Neural Networks (Computer); Retrospective Studies; Sensitivity and Specificity; Taiwan; Tomography, X-Ray Computed; Treatment Outcome
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science