Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Chemistry / 化學系
  4. Designing sensing devices using porous composite materials
 
  • Details

Designing sensing devices using porous composite materials

Journal
Journal of Composites Science
Journal Volume
5
Journal Issue
1
Date Issued
2021
Author(s)
Wang C.-M
WEI-SSU LIAO  
DOI
10.3390/jcs5010035
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104533975&doi=10.3390%2fjcs5010035&partnerID=40&md5=823ac6937ad53e5a009466e262436bf5
https://scholars.lib.ntu.edu.tw/handle/123456789/575882
Abstract
The need for portable and inexpensive analytical devices for various critical issues has led researchers to seek novel materials to construct them. Soft porous materials, such as paper and sponges, are ideal candidates for fabricating such devices due to their light weight and high availability. More importantly, their great compatibility toward modifications and add-ons allows them to be customized to match different objectives. As a result, porous material-based composites have been extensively used to construct sensing devices applied in various fields, such as point-of-care testing, environmental sensing, and human motion detection. In this article, we present fundamental thoughts on how to design a sensing device based on these interesting composite materials and provide correlated examples for reader’s references. First, a rundown of devices made with porous composite materials starting from their fabrication techniques and compatible detection methods is given. Thereafter, illustrations are provided on how device function and property improvements are achieved with a delicate use of composite materials. This includes extending device lifetime by using polymer films to protect the base material, while signal readout can be enhanced by a careful selection of protective cover and the application of advanced photo image analysis techniques. In addition to chemical sensors, mechanical responsive devices based on conductive composite materials are also discussed with a focus on base material selection and platform design. We hope the ideas and discussions presented in this article can help researchers interested in designing sensing devices understand the importance and usefulness of composite materials. ? 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science