Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Physics / 物理學系
  4. Magnetic Tunneling Effect in Co/CoO/Fe3O4 and Fe3O4/AlOx/Co Junctions
 
  • Details

Magnetic Tunneling Effect in Co/CoO/Fe3O4 and Fe3O4/AlOx/Co Junctions

Date Issued
2004
Date
2004
Author(s)
Jian, Chung-Chin
DOI
zh-TW
URI
http://ntur.lib.ntu.edu.tw//handle/246246/54477
Abstract
Abstract Magnetic trilayer junctions(MTJs) based on half metallic oxides have attracted much attention because of their potential in memory and logic device applications. Among half metallic materials, the magnetite(Fe3O4) is the most promising candidate due to its high ferrimagnetic Curie temperature(~856K). And an enhanced TMR effect has been expected for this sort of MTJ. However, up to now, the MR effect of MTJ with Fe3O4 as an electrode has been found to be negligibly small. Several causes have been speculated to explain the reduction. For examples, the spin flip processes on the interface would have a deleterious effect on the MR. A less-than ideal insulating barrier containing impurities and defects would also lead to spin scattering. In order to explore the major origins of reduction in MR, we have systematically investigated the TMR of MTJs prepared under various conditions. Our MTJs consist of Fe3O4 and Co as the electrodes sandwitched with cobalt oxide and AlOx thin layers as the tunneling barriers for comparison. The choice of Fe3O4 and Co as the electrodes is due to a large difference of coercivities from these two magnetic layers. Besides, a thin oxide layer can be directly obtained from oxidation of the metal layer right after deposition of the metal, where metals are Co and Al, respectively. We have adopted different oxidation time to acquire tunneling barrier of various thickness. Thus, the impact of tunneling barrier on TMR can be evaluated. Furthermore, since the polarization of Fe3O4 has been predicted to be negative, the inverse MR will be also studied. In Our MTJs, the resistance of electrode Fe3O4 is too large compared to the junction’s, then it would cause nonuniform current distribution over the junction area. Thus, negative resistance will be obtained by using four-probe measurement. We try to reduce the junction area from mm2-size to um2-size to pursuit a uniform coverage of the barrier on the electrode in MTJs. For this purpose, we learn to use E-beam lithography technique to make um2-size magnetic films. We also fabricate hundreds of nm size Co dot arrays to investigate its properties.
Subjects
磁性穿隧效應
Magnetic Tunneling Effect
Type
thesis

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science