Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Design and Testing of a Bearingless Piezo Jet Micro Heatsink
 
  • Details

Design and Testing of a Bearingless Piezo Jet Micro Heatsink

Journal
Journal of Marine Science and Technology (Taiwan)
Journal Volume
30
Journal Issue
3
Date Issued
2022-01-01
Author(s)
Wang, Rong Tsu
Wang, Jung Chang
SIH-LI CHEN  
DOI
10.51400/2709-6998.2575
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/631916
URL
https://api.elsevier.com/content/abstract/scopus_id/85137758619
Abstract
The present study utilized piezoelectric ceramics (PC) as actuators to design five new piezoelectric heatsinks and preliminarily investigated the different design types and their operating conditions, such as the frequency, placement distance, thickness between piezoelectric sheets, piezoelectric sheet size, and noise produced. The results showed that when the micro heatsink bearingless piezo jet was placed too close to the heat source, the high temperature sucked back the surrounding fluids, causing the fluid chamber temperature to rise and the cooling effect to be reduced. Therefore, the heatsink should be placed between 10 and 20 mm from the heat source. With the proper distance, the heat convection coefficient was 200% greater than that of a traditional rotary fan. The cooling effect of the five heatsinks was calculated using the thermal analysis method, and the results indicated that the convection thermal resistance of the best heatsink could be reduced by about 36%, and the frequency, flow velocity, and noise were all positively correlated. When the supplied piezoelectric frequency was 300 Hz, the noise level was similar to that of a commercial rotary fan. The tested heatsinks had one of two volumes depending on the size of the piezoelectric sheet, including 3150 mm3 or 4050 mm3, respectively. An array of 25e32 micro heatsinks of the same size were connected in series. The power consumption of any single heatsink was 10% of that for a rotary fan. Among the five types of heatsinks, the best type had a piezoelectric sheet diameter of 41 mm, a piezoelectric thickness of 2 mm, and an opening length of 4 mm. Furthermore, the best operating conditions were found at a frequency of 300 Hz and a placement distance of 20 mm.
Subjects
Actuator | LED | Piezoelectric frequency | Synthetic jet | Voltage
Publisher
NATL TAIWAN OCEAN UNIV
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science