Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Biomedical Electronics and Bioinformatics / 生醫電子與資訊學研究所
  4. Training a Deep Contextualized Language Model for International Classification of Diseases, 10th Revision Classification via Federated Learning: Model Development and Validation Study
 
  • Details

Training a Deep Contextualized Language Model for International Classification of Diseases, 10th Revision Classification via Federated Learning: Model Development and Validation Study

Journal
JMIR Medical Informatics
Journal Volume
10
Journal Issue
11
Date Issued
2022-11-01
Author(s)
Chen, Pei Fu
He, Tai Liang
Lin, Sheng Che
Chu, Yuan Chia
Kuo, Chen Tsung
FEI-PEI LAI  
Wang, Ssu Ming
Zhu, Wan Xuan
Chen, Kuan Chih
LU-CHENG KUO  
Hung, Fang Ming
Lin, Yu Cheng
Tsai, I. Chang
Chiu, Chi Hao
Chang, Shu Chih
Yang, Chi Yu
DOI
10.2196/41342
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/633819
URL
https://api.elsevier.com/content/abstract/scopus_id/85145461181
Abstract
Background: The automatic coding of clinical text documents by using the International Classification of Diseases, 10th Revision (ICD-10) can be performed for statistical analyses and reimbursements. With the development of natural language processing models, new transformer architectures with attention mechanisms have outperformed previous models. Although multicenter training may increase a model's performance and external validity, the privacy of clinical documents should be protected. We used federated learning to train a model with multicenter data, without sharing data per se. Objective: This study aims to train a classification model via federated learning for ICD-10 multilabel classification. Methods: Text data from discharge notes in electronic medical records were collected from the following three medical centers: Far Eastern Memorial Hospital, National Taiwan University Hospital, and Taipei Veterans General Hospital. After comparing the performance of different variants of bidirectional encoder representations from transformers (BERT), PubMedBERT was chosen for the word embeddings. With regard to preprocessing, the nonalphanumeric characters were retained because the model's performance decreased after the removal of these characters. To explain the outputs of our model, we added a label attention mechanism to the model architecture. The model was trained with data from each of the three hospitals separately and via federated learning. The models trained via federated learning and the models trained with local data were compared on a testing set that was composed of data from the three hospitals. The micro F1 score was used to evaluate model performance across all 3 centers. Results: The F1 scores of PubMedBERT, RoBERTa (Robustly Optimized BERT Pretraining Approach), ClinicalBERT, and BioBERT (BERT for Biomedical Text Mining) were 0.735, 0.692, 0.711, and 0.721, respectively. The F1 score of the model that retained nonalphanumeric characters was 0.8120, whereas the F1 score after removing these characters was 0.7875 - a decrease of 0.0245 (3.11%). The F1 scores on the testing set were 0.6142, 0.4472, 0.5353, and 0.2522 for the federated learning, Far Eastern Memorial Hospital, National Taiwan University Hospital, and Taipei Veterans General Hospital models, respectively. The explainable predictions were displayed with highlighted input words via the label attention architecture. Conclusions: Federated learning was used to train the ICD-10 classification model on multicenter clinical text while protecting data privacy. The model's performance was better than that of models that were trained locally.
Subjects
federated learning | International Classification of Diseases | machine learning | multilabel text classification | natural language processing
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science