Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. Physiology / 生理學科所
  4. Estrogen receptor status prediction by gene component regression: A comparative study
 
  • Details

Estrogen receptor status prediction by gene component regression: A comparative study

Journal
International Journal of Data Mining and Bioinformatics
Journal Volume
9
Journal Issue
2
Pages
149-171
Date Issued
2014
Author(s)
Huang C.-C.
Chuang E.Y.
Tu S.-H.
Lien H.-H.
Jeng J.-Y.
Liu J.-S.
Huang C.-S.
LIANG-CHUAN LAI  
DOI
10.1504/IJDMB.2014.059065
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893519219&doi=10.1504%2fIJDMB.2014.059065&partnerID=40&md5=411d027d283c1319e31dc0dd89768046
https://scholars.lib.ntu.edu.tw/handle/123456789/507751
Abstract
The aim of the study is to evaluate gene component analysis for microarray studies. Three dimensional reduction strategies, Principle Component Regression (PCR), Partial Least Square (PLS) and Reduced Rank Regression (RRR) were applied to publicly available breast cancer microarray dataset and the derived gene components were used for tumor classification by Logistic Regression (LR) and Linear Discriminative Analysis (LDA). The impact of gene selection/filtration was evaluated as well. We demonstrated that gene component classifiers could reduce the high-dimensionality of gene expression data and the collinearity problem inherited in most modern microarray experiments. In our study gene component analysis could discriminate Estrogen Receptor (ER) positive breast cancers from negative cancers and the proposed classifiers were successfully reproduced and projected into independent microarray dataset with high predictive accuracy.Copyright ? 2014 Inderscience Enterprises Ltd.
SDGs

[SDGs]SDG3

Other Subjects
estrogen receptor; tumor protein; article; breast tumor; comparative study; DNA microarray; female; genetic database; genetics; human; metabolism; Breast Neoplasms; Databases, Genetic; Female; Humans; Neoplasm Proteins; Oligonucleotide Array Sequence Analysis; Receptors, Estrogen
Publisher
Inderscience Publishers
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science