Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Biomedical Engineering / 醫學工程學系
  4. Fast interactive regional pattern merging for generic tissue segmentation in histopathology images
 
  • Details

Fast interactive regional pattern merging for generic tissue segmentation in histopathology images

Journal
Biomedical Engineering - Applications, Basis and Communications
Journal Volume
33
Journal Issue
2
Date Issued
2021
Author(s)
Lor K.-L
Chen C.-M.
CHUNG-MING CHEN  
DOI
10.4015/S1016237221500125
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102426931&doi=10.4015%2fS1016237221500125&partnerID=40&md5=68b0f8fd538d93d579f0b2e8fbf838c9
https://scholars.lib.ntu.edu.tw/handle/123456789/577117
Abstract
The image segmentation of histopathological tissue images has always been a challenge due to the overlapping of tissue color distributions, the complexity of extracellular texture and the large image size. In this paper, we introduce a new region-merging algorithm, namely, the Regional Pattern Merging (RPM) for interactive color image segmentation and annotation, by efficiently retrieving and applying the user's prior knowledge of stroke-based interaction. Low-level color/texture features of each region are used to compose a regional pattern adapted to differentiating a foreground object from the background scene. This iterative region-merging is based on a modified Region Adjacency Graph (RAG) model built from initial segmented results of the mean shift to speed up the merging process. The foreground region of interest (ROI) is segmented by the reduction of the background region and discrimination of uncertain regions. We then compare our method against state-of-the-art interactive image segmentation algorithms in both natural images and histological images. Taking into account the homogeneity of both color and texture, the resulting semi-supervised classification and interactive segmentation capture histological structures more completely than other intensity or color-based methods. Experimental results show that the merging of the RAG model runs in a linear time according to the number of graph edges, which is essentially faster than both traditional graph-based and region-based methods. ? 2021 National Taiwan University.
Subjects
Color; Color image processing; Graph structures; Graphic methods; Iterative methods; Merging; Supervised learning; Textures; Tissue; Color image segmentation; Histological structure; Interactive image segmentation; Interactive segmentation; Region adjacency graphs; Region merging algorithms; Region-based methods; Semi-supervised classification; Image segmentation
SDGs

[SDGs]SDG3

Other Subjects
Color; Color image processing; Graph structures; Graphic methods; Iterative methods; Merging; Supervised learning; Textures; Tissue; Color image segmentation; Histological structure; Interactive image segmentation; Interactive segmentation; Region adjacen
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science