Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Civil Engineering / 土木工程學系
  4. Developments of the Hybrid Flux-Splitting Finite-Volume Schemes for 2D Shallow Water Equations
 
  • Details

Developments of the Hybrid Flux-Splitting Finite-Volume Schemes for 2D Shallow Water Equations

Date Issued
2004
Date
2004
Author(s)
Guo, Wen-Dar
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/50222
Abstract
The development of a numerical scheme that resolves sharp discontinuities without spurious oscillations and do not produce too much numerical dissipation is of great importance in the computational shallow-water hydrodynamics. In this thesis, three hybrid flux-splitting finite-volume schemes are proposed for solving two-dimensional shallow water equations. In the framework of the finite volume method, a hybrid flux-splitting algorithm without Jacobian matrix operation is established by applying the advection upstream splitting method (AUSM) to estimate the cell-interface fluxes. Based on the proposed algorithm, a first-order hybrid flux-splitting finite-volume (HFS) scheme is developed, which is robust and rather simple to implement. To improve the numerical resolutions of discontinuities, the monotonic upstream schemes for conservation laws (MUSCL) method with limiters and the two-step component-wise total variation diminishing (TVD) method are adopted for the second-order extensions. The proposed three finite-volume schemes are verified through the simulations of the 1D idealized dam-break, extreme rarefaction wave, steady transcritical flow and oblique hydraulic jump problems. The numerical results by the proposed schemes are compared with those by other shock-capturing upwind schemes as well as exact solutions. It is demonstrated that the proposed schemes are accurate and efficient to capture the discontinuous solutions without any spurious oscillations in the complex flow domains with dry-bed situation, bottom slope or friction. In addition, the proposed schemes are proven to produce no entropy-violating solution and to achieve the benefits combining the efficiency of flux-vector splitting (FVS) scheme and the accuracy of flux-difference splitting (FDS) scheme. Furthermore, the proposed schemes are applied to simulate several 2D dam-break problems, including the partial dam breaking, circular dam breaking and four experimental dam-break problems. The simulated results show that the proposed schemes can deal with the rarefaction waves, shocks, the reflected shocks, the reverse flows and the dry/wet fronts very well.
Subjects
混合通量分裂式有限體積算則
淺水波方程式
有限體積法
對流逆風分裂法
全變量消逝
Finite volume method
Advection upstream splitting method
Hybrid flux-splitting finite-volume schemes
Shallow water equations
Total variation diminishing
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-93-F87521302-1.pdf

Size

23.31 KB

Format

Adobe PDF

Checksum

(MD5):40b2f88f0d82f36e3482eee31bca27b5

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science