Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. Brain and Mind Sciences / 腦與心智科學研究所
  4. Interaction of FBXL14 and a Schizophrenia Associated Gene DISC1 in Mouse Embryonic Brain
 
  • Details

Interaction of FBXL14 and a Schizophrenia Associated Gene DISC1 in Mouse Embryonic Brain

Date Issued
2014
Date
2014
Author(s)
Huang, Ting-Wei
URI
http://ntur.lib.ntu.edu.tw//handle/246246/275355
Abstract
Disrupted in Schizophrenia 1 (DISC1), first identified in human (Homo sapiens), is a disease-related gene that is associated with schizophrenia and other psychiatric disorders including bipolar disorder and autism spectrum disorders (Soares et al, 2011). DISC1 protein is known to be involved in neurodevelopment processes such as neuronal migration (Ishizuka et al, 2011) and neuronal progenitor proliferation (Singh et al, 2010). F-box and leucine-rich repeat protein 14 (FBXL14) is a subunit of E3 ubiquitin ligase complex involved in proteasome-mediated protein degradation (Cardozo et al, 2004). Preliminary data from our lab showed that mouse DISC1 (mDISC1) co-immunoprecipitates (co-IP) with mouse FBXL14 (mFBXL14), suggesting that these two proteins together may play a role in regulating neurodevelopment. To characterize the interaction of mDISC1 and mFBXL14, the deletion constructs of these two genes were prepared to define their respective interaction domains by co-IP assays. GST pull-down assay was also performed to address whether the interactions are via direct binding. Using in utero electroporation (IUEP), we found knock-down of mFbxl14 caused mouse embryonic cortical neurons gathering in the intermediate zone while knock-down of mDisc1 were reported to cause cortical neuron migration defects (Kamiya et al, 2005). How the interaction of mDISC1 and mFBXL14 may affect embryonic cortical neuronal migration and proliferation in vivo was also explored. Through these studies, the molecular basis of the interaction of mDISC1 and mFBXL14 was characterized, which provides insight into the developmental role of mDISC1 and mFBXL14 in the embryonic corticogenesis.
Subjects
schizophrenia
neurodevelopment
neuronal proliferation
neuronal migration
SDGs

[SDGs]SDG3

Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-103-R01454003-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):6051a4d79dc5956c43fcab3e4c472b87

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science