Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electronics Engineering / 電子工程學研究所
  4. Design of High-Speed CMOS Clock Generation and Data Recovery Circuits
 
  • Details

Design of High-Speed CMOS Clock Generation and Data Recovery Circuits

Date Issued
2007
Date
2007
Author(s)
Liang, Che-Fu
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/57415
Abstract
ABSTRACT With the progress of the CMOS technologies and the increasing demand for high-speed data communications, new specifications utilizing wider bandwidth than before spawns and the needs for high-performance analog circuits augment as well. The long-standing phase-locked loop (PLL) and its high-speed applications play major roles in these designs. Though relating techniques for PLL have prospered for years, new system architectures and circuit topologies are still desired to overcome the ever-increasing speed limitation. Hence, in this dissertation we focus on the design and application of phase-locked systems for high-speed wireless or wire-line applications, including clock generation and data recovery circuits. Several system architectures and circuit topologies are proposed to alleviate the design bottleneck on high-speed CMOS transceivers. First, a digital technique with auto-tracking ability is presented to calibrate the current mismatch of the charge pump in phase-locked systems. A 5GHz frequency synthesizer is used to justify the proposed calibration technique. It has been has been implemented in 0.18µm CMOS. The measured output spur is suppressed by 5.35dB at 5.2GHz after the calibration circuits are active. The measured output spur levels are less than -68.5 dBc throughout the whole output frequency range. The measured phase noise is -110dBc/Hz at an offset frequency of 1MHz. Next, a 14-band frequency synthesizer for ultra-wideband (UWB) applications has been implemented in 0.18µm CMOS. The unwanted spurs due to frequency mixing are at least –35dB lower than the output carriers by using a quadrature divide-by-3 circuit and a two-stage single-sideband mixer. The core circuit area is 1.5 mm2 and total power consumption is 160mW. Hereafter, a 10Gbps inductorless burst-mode clock and data recovery (BMCDR) circuit using a gated digital-controlled oscillator has been fabricated in 0.18µm CMOS. The digitally frequency-calibrated architecture is adopted to save the power consumption and chip area. The CDR circuit occupies an active area of 0.16mm2 and draws 36mW from a 1.8V supply. The measured rms jitter and peak-to-peak jitter is 8.5ps and 42.7ps, respectively. With the knowledge of BMCDR circuits, a jitter-tolerance-enhanced 10Gb/s clock and data recovery (CDR) circuit is presented. By using a gated-digital-controlled oscillator (GDCO), the proposed GDCO-based phase detector achieves a wide linear range and its jitter tolerance is enhanced by a factor of 2 without sacrificing the jitter transfer. The prototype chip has been fabricated in 0.13µm CMOS and consumes 60mW from a 1.5V supply. It occupies an active area of 0.36mm2. Measurements on the testchip demonstrate an rms jitter of 0.96ps and a peak-to-peak jitter of 7.11ps with a 27-1 PRBS. Finally, we conclude this dissertation.
Subjects
鎖相迴路
頻率合成器
時脈與資料回復電路
Phase-Locked-Loop
Frequency Synthesizer
Clock and Data Recovery Circuit
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-96-F92943016-1.pdf

Size

23.31 KB

Format

Adobe PDF

Checksum

(MD5):64e8d5b185d33790f3c7cbc61117e725

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science