Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Civil Engineering / 土木工程學系
  4. Evaluation and Performance Testing of Eccentric Rolling Isolation System
 
  • Details

Evaluation and Performance Testing of Eccentric Rolling Isolation System

Journal
Structural Control and Health Monitoring
Journal Volume
2024
Date Issued
2024-01-01
Author(s)
Yang, Cho Yen
Chiao, Dan
Lai, Yong An
CHIA-MING CHANG  
Chung, Lap Loi
DOI
10.1155/2024/8845965
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/641747
URL
https://api.elsevier.com/content/abstract/scopus_id/85187550408
Abstract
Seismic isolation has become a widely accepted method for the protection of structures and nonstructural components. However, this control strategy is unfavorable against near-fault earthquakes, particularly those featuring velocity-pulse effects. Excessive isolation displacements and accelerations can occur during such earthquakes, resulting in amplified responses of the superstructure. To resolve this problem, this study develops a prototype of the eccentric rolling isolation system consisting of one platform eccentrically pin-connected to four circular rollers. The eccentric pin connection yields a nonlinear restoring force of the proposed system and results in displacement-dependent resonances, and the inherent mechanical friction also yields an energy dissipation capability of the system. As the magnitude of ground excitation increases, the prototype system generates a lower resonant frequency away from the dominant frequencies of earthquakes. This behavior is experimentally investigated and verified for mechanical behavior and seismic performance. In the experiment, sinusoidal, far-field, and near-fault ground motions are considered in shaking table testing. Some parameters, such as the eccentricity, roller size, and inertial force, are also experimentally investigated. As found in the experimental result, the feasibility of the prototype system is successfully verified. Meanwhile, the comparable simulation results further validate the mathematical model of the prototype system. Consequently, the eccentric rolling isolation system has demonstrated isolation effectiveness against far-field ground motions and has good potential to perform better than a linear system under near-fault ground motions.
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science