Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. National Taiwan University Hospital / 醫學院附設醫院 (臺大醫院)
  4. Prediction of methicillin-resistant Staphylococcus aureus and carbapenem-resistant Klebsiella pneumoniae from flagged blood cultures by combining rapid Sepsityper MALDI-TOF mass spectrometry with machine learning
 
  • Details

Prediction of methicillin-resistant Staphylococcus aureus and carbapenem-resistant Klebsiella pneumoniae from flagged blood cultures by combining rapid Sepsityper MALDI-TOF mass spectrometry with machine learning

Journal
International journal of antimicrobial agents
Journal Volume
62
Journal Issue
6
Date Issued
2023-10-04
Author(s)
Yu, Jiaxin
Lin, Hsiu-Hsien
Tseng, Kun-Hao
Lin, Yu-Tzu
Chen, Wei-Cheng
Tien, Ni
Cho, Chia-Fong
Liang, Shinn-Jye
Ho, Lu-Ching
Hsieh, Yow-Wen
Hsu, Kai Cheng
Ho, Mao-Wang
PO-REN HSUEH  
Cho, Der-Yang
DOI
10.1016/j.ijantimicag.2023.106994
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/637167
URL
https://api.elsevier.com/content/abstract/scopus_id/85175573474
Abstract
This study investigated combination of the Rapid Sepsityper Kit and a machine learning (ML)-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) approach for rapid prediction of methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Klebsiella pneumoniae (CRKP) from positive blood culture bottles. The study involved 461 patients with monomicrobial bloodstream infections. Species identification was performed using the conventional MALDI-TOF MS Biotyper system and the Rapid Sepsityper protocol. The data underwent preprocessing steps, and ML models were trained using preprocessed MALDI-TOF data and corresponding labels. The interpretability of the model was enhanced using SHapely Additive exPlanations values to identify significant features. In total, 44 S. aureus isolates comprising 406 MALDI-TOF MS files and 126 K. pneumoniae isolates comprising 1249 MALDI-TOF MS files were evaluated. This study demonstrated the feasibility of predicting MRSA among S. aureus and CRKP among K. pneumoniae isolates using MALDI-TOF MS and Sepsityper. Accuracy, area under the receiver operating characteristic curve, and F1 score for MRSA/methicillin-susceptible S. aureus were 0.875, 0.898 and 0.904, respectively; for CRKP/carbapenem-susceptible K. pneumoniae, these values were 0.766, 0.828 and 0.795, respectively. In conclusion, the novel ML-based MALDI-TOF MS approach enables rapid identification of MRSA and CRKP from flagged blood cultures within 1 h. This enables earlier initiation of targeted antimicrobial therapy, reducing deaths due to sepsis. The favourable performance and reduced turnaround time of this method suggest its potential as a rapid detection strategy in clinical microbiology laboratories, ultimately improving patient outcomes.
Subjects
Carbapenem-resistant Klebsiella pneumoniae; MALDI-TOF MS; Machine learning; Methicillin-resistant Staphylococcus aureus; Prediction platform; Specific MBT-Sepsityper module
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science