Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Novel word embedding and translation-based language modeling for extractive speech summarization
 
  • Details

Novel word embedding and translation-based language modeling for extractive speech summarization

Journal
2016 ACM Multimedia Conference
Pages
377-381
ISBN
9781450336031
Date Issued
2016
Author(s)
Chen K.-Y.
Liu S.-H.
Chen B.
Wang H.-M.
HSIN-HSI CHEN  
DOI
10.1145/2964284.2967246
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994618663&doi=10.1145%2f2964284.2967246&partnerID=40&md5=d04fbc61f1fc38b9832b35e9ab293cc6
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/413093
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994618663&doi=10.1145%2f2964284.2967246&partnerID=40&md5=d04fbc61f1fc38b9832b35e9ab293cc6
Abstract
Word embedding methods revolve around learning continuous distributed vector representations of words with neural networks, which can capture semantic and/or syntactic cues, and in turn be used to induce similarity measures among words, sentences and documents in context. Celebrated methods can be categorized as prediction-based and count-based methods according to the training objectives and model architectures. Their pros and cons have been extensively analyzed and evaluated in recent studies, but there is relatively less work continuing the line of research to develop an enhanced learning method that brings together the advantages of the two model families. In addition, the interpretation of the learned word representations still remains somewhat opaque. Motivated by the observations and considering the pressing need, this paper presents a novel method for learning the word representations, which not only inherits the advantages of classic word embedding methods but also offers a clearer and more rigorous interpretation of the learned word representations. Built upon the proposed word embedding method, we further formulate a translation-based language modeling framework for the extractive speech summarization task. A series of empirical evaluations demonstrate the effectiveness of the proposed word representation learning and language modeling techniques in extractive speech summarization. ? 2016 ACM.
Subjects
Interpretation
Language model
Representation
Speech summarization
Word embedding
Description
24th ACM Multimedia Conference, MM 2016, 15 October 2016 through 19 October 2016
Type
conference paper
File(s)
Loading...
Thumbnail Image
Name

1607.06532.pdf

Size

808.69 KB

Format

Adobe PDF

Checksum

(MD5):112374f80288d3155bb2f789452f02fd

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science