Quantitative assessment of matrix elasticity change in a 3D cell culture system
Date Issued
2014
Date
2014
Author(s)
Li, Chun-Ting
Abstract
The stiffening of extracellular matrix (ECM) resulting from active cell remodeling plays a crucial role in many physiological and pathological processes. Culturing cells in 3D better recapitulates the in vivo conditions than in 2D models. However, there are few platforms allowing measurements of the dynamics of 3D ECM stiffness resulting from cell activities. Ultrasound shear wave elasticity imaging (SWEI) has high-throughput, non-contact nature and greater potential to evaluate the spatiotemporal dynamics of ECM stiffness. In the present work, we evaluate the feasibility of quantifying changes of ECM stiffness in a 3D cell culture system using SWEI. The 3D cell culture system was composed of a cell-culturing hydrogel about 1—2 mm in high. The gel was mixed with biocompatible scatterers to facilitate ultrasound imaging and attached to an absorption layer to avoid wave reflection at boundaries. A 20 MHz ultrasonic transducer was employed to generate radiation forces in the gels and a 40MHz transducer was used to scan the propagating shear waves. The 3D gels were modeled as Voigt materials and the shear moduli were determined from the phase velocities of the shear waves at various frequencies. Using the novel platform, we successfully demonstrated changes of matrix stiffness and structure when culturing different cancer and normal cell lines. After cultured in the system for 1 week, advanced cancer cells such human lung adenocarcinoma cells CL1-5 stiffened the matrix about 40—50 times than the acellular controls. Gels stiffening was always associated with marked volume contraction and there existed a power law between these two variables. After applying blebbsitatin and beta-aminopropionitrile respectively to the culture system to inhibit cell contraction and matrix cross-linking, we showed that the matrix stiffening mainly resulted from cell contraction. Our data support that SWEI is a promising tool to investigate the dynamics of cell-ECM mechanobiology in 3D models.
Subjects
三維細胞培養
機械生物學
剪切波
彈性影像
基質重組
SDGs
Type
thesis
File(s)![Thumbnail Image]()
Loading...
Name
ntu-103-R01945028-1.pdf
Size
23.32 KB
Format
Adobe PDF
Checksum
(MD5):db78aeb237456cc9ee86b0b3a5e5b37c