Publication: Design of Multi-layer Planar Circuits and Substrate Integrated Waveguide Transition for V-band
dc.contributor | 吳瑞北 | zh-TW |
dc.contributor | 臺灣大學:電信工程學研究所 | zh-TW |
dc.contributor.author | Huang, Shiang-Jau | en |
dc.creator | Huang, Shiang-Jau | en |
dc.date | 2009 | en |
dc.date.accessioned | 2010-07-01T08:55:03Z | |
dc.date.accessioned | 2018-07-05T04:11:54Z | |
dc.date.available | 2010-07-01T08:55:03Z | |
dc.date.available | 2018-07-05T04:11:54Z | |
dc.date.issued | 2009 | |
dc.description.abstract | This thesis continues previous works of two kinds of vertical transitions between microstrip line and substrate integrated waveguide (SIW), and a vertical transition between coplanar waveguides (CPW) utilizing flip-chip method. All these structures are fabricated on low-temperature co-fired ceramic (LTCC) or RO4003 substrate. This thesis also analyzes the equivalent circuits of the transition structures.he first transition design is realized with a shorted via between the end of the microstrip line and the bottom layer of SIW. A current is induced on the via and energy is coupled to SIW. The microstrip line is on the upper layer, and the SIW is on the lower layers with vertical metal walls realized by closely spaced vias. This structure is designed at 73GHz with a 17% fractional bandwidth (FBW) and a 0.72dB insertion loss.nother transition structure is realized with a slot on the top wall of SIW, which is fed by a microstrip line ended with a quarter wave length open stub. With the magnetic current induced on the slot, the transition is achieved. The microstrip line is on the upper layer, and the SIW is on the lower layers with vertical metal walls realized by closely spaced vias. This structure is designed at 73GHz with a 38.7% FBW and 1.07dB insertion loss. Another design is also given at 60GHz with a radial stub, a 53.3% FBW and 0.65dB insertion loss can be achieved.he last transition structure is composed of two CPW sections, and is connected by flip-chip method. By cutting the corner on the ground metals of both CPW sections. The capacitance or inductance in the interconnect region can be compensated to achieve impedance matching. This structure is designed from DC to 25GHz for 10dB in-band return loss.ll of the designs are simulated by Ansoft HFSS and compared with measurements. Good agreements are also obtained. | en |
dc.description.tableofcontents | 致謝 I要 IIIbstract V錄 VII目錄 X目錄 XIII1章 緒論 1.1 研究動機 1.2 相關研究現況 2.3 章節內容概述 112章 微帶線至基板合成波導短路結構轉接器 13.1 設計結構 13.1.1 介質矩形波導的設計 13.1.2 微帶線至基板合成波導的設計結構 14.2 阻抗匹配設計的參數分析 17.2.1 等效電路 17.2.2 金屬片與開槽對電容值的影響 18.2.3 連通柱上金屬片的大小 20.2.4 連通柱與波導金屬壁的距離 22.2.5 使用不同層數的基板合成波導 23.3 模擬與量測結果 25.3.1 設計規格 25.3.2 結構與尺寸 25.3.3 單端結構模擬結果 26.3.4 背對背結構模擬與量測結果 263章 微帶線至基板合成波導開路結構轉接器 29.1 微帶線至基板合成波導的設計結構 29.2 阻抗匹配設計的參數分析 32.2.1 等效電路 32.2.2 槽線寬度對輸入阻抗的影響 34.2.3 槽線長度對輸入阻抗的影響 36.2.4 槽線與波導金屬壁的距離 36.3 模擬與量測結果 38.3.1 設計規格 38.3.2 結構與尺寸 38.3.3 單端結構模擬結果 39.3.4 背對背結構模擬與量測結果 40.4 頻寬增進之設計結構 42.4.1 設計原理 42.4.2 設計規格 43.4.3 結構與尺寸 44.4.4 單端結構模擬 44.4.5 背對背結構模擬與量測結果 454章 覆晶轉接結構設計 49.1 共面波導至面波導的設計結構 49.2 阻抗匹配設計的參數分析 52.2.1 等效電路 52.2.2 開槽大小對阻抗的影響 53.2.3 凸塊距離對阻抗的影響 55.3 覆晶轉接製做方法與步驟 57.3.1 準備工作 57.3.2 製做步驟 58.4 模擬與量測結果 60.4.1 設計規格 60.4.2 結構與尺寸 60.4.3 模擬與量測結果 615章 結論 63考文獻 65 | en |
dc.format.extent | 6565833 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.other | U0001-1208200923153100 | en |
dc.identifier.uri | http://ntur.lib.ntu.edu.tw//handle/246246/188320 | |
dc.identifier.uri.fulltext | http://ntur.lib.ntu.edu.tw/bitstream/246246/188320/1/ntu-98-R96942072-1.pdf | |
dc.language | zh-TW | en |
dc.language.iso | en_US | |
dc.subject | Multi-layer | en |
dc.subject | Planar Circuits | en |
dc.subject | SIW | en |
dc.subject | Transition | en |
dc.subject | V-band | en |
dc.title | Design of Multi-layer Planar Circuits and Substrate Integrated Waveguide Transition for V-band | en |
dc.type | thesis | en |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1