Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Applied Mechanics / 應用力學研究所
  4. Vasomotion does inhibit mass exchange between axisymmetric blood vessels and tissue
 
  • Details

Vasomotion does inhibit mass exchange between axisymmetric blood vessels and tissue

Journal
Journal of Theoretical Biology
Journal Volume
302
Pages
1-5
Date Issued
2012
Author(s)
Payne S.J.
Oakes C.N.J.
Park C.S.
STEPHEN JOHN PAYNE  
DOI
10.1016/j.jtbi.2012.02.024
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84858123651&doi=10.1016%2fj.jtbi.2012.02.024&partnerID=40&md5=58e2a32a87aac4456964f95fb3f8457d
https://scholars.lib.ntu.edu.tw/handle/123456789/611809
Abstract
Vasomotion, the name given to the physiological phenomenon whereby blood vessel walls exhibit rhythmic oscillations in diameter, is a complex process and very poorly understood. It has been proposed as a mechanism for protecting tissue when perfusion levels are reduced, since it has experimentally been shown to occur more frequently under such conditions. However, no quantitative evidence yet exists for whether the oscillation of the wall actually has any effect on mass transport to tissue. In our previous work, it was shown that the presence of non-linearities in the governing equation could result in a significant change in time-averaged mass transport to tissue: however, it was not possible, due to the limitations of the model, to determine whether time-averaged mass transport increased or decreased. This model is extended in this paper through coupling of the one-dimensional axisymmetric mass transport equations in tissue and blood to quantify the effects of vasomotion on mass transport to tissue. The results show that over a wide parameter range, surrounding those values calculated from experimental data, vasomotion does inhibit mass transport to tissue in a one-dimensional axisymmetric blood vessel by an amount that is predominantly dependent upon the amplitude of oscillation and that increases rapidly at larger oscillation amplitudes. ? 2012 Elsevier Ltd.
Subjects
amplitude
blood
experimental study
fluid flow
mass transport
one-dimensional modeling
quantitative analysis
arteriole
artery
article
blood flow
blood vessel diameter
blood vessel function
hydraulic resistance
oscillation
oxygen tissue level
priority journal
transport and binding phenomena
vascular resistance
vasomotility
Arteries
Biological Clocks
Biological Transport
Blood Vessels
Capillary Permeability
Diffusion
Humans
Models, Cardiovascular
Oxygen Consumption
Vasomotor System
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science