Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Biomedical Engineering / 醫學工程學系
  4. A laser micromachined probe for recording multiple field potentials in the thalamus
 
  • Details

A laser micromachined probe for recording multiple field potentials in the thalamus

Resource
Journal of Neuroscience Methods 139 (1): 99-109
Journal
Journal of Neuroscience Methods
Journal Volume
139
Journal Issue
1
Pages
99-109
Date Issued
2004
Date
2004
Author(s)
Chen, You-Yin
Kuo, Te-Son
Jaw, Fu-Shan  
DOI
10.1016/j.jneumeth.2004.04.022
URI
http://ntur.lib.ntu.edu.tw//handle/246246/132501
https://www.scopus.com/inward/record.uri?eid=2-s2.0-4444365312&doi=10.1016%2fj.jneumeth.2004.04.022&partnerID=40&md5=794fcd17a8accfd5281209ab5dffdf92
Abstract
Multichannel recording provides integral information about electrical brain activities at one instant in time. In this study, multielectrode probes were fabricated to record the thalamic field potentials (FPs) responding to the electrical stimulation of nerve at the rat tail. At first, the number of sweeps used to form the evoked FP average and the spatial sampling density were determined by using cross-correlation functions, which were then statistically analyzed. The difference was significant at P < 0.05, if the number of sweeps for averaging was more than 50 and the spatial interval between two consecutive recording sites was less than 50 mum in the anteroposterior, mediolateral and ventrodorsal directions. The responsive area was distributed vertically in the thalamus (ventral posterior lateral (VPL) nucleus); therefore, the recording sites were arranged in one linear array. Sixteen recording sites , which were 50 mum apart from each other, were distributed in the ventrodorsal direction. A 16-channel silicon probe was fabricated by using a standard photolithography process and laser micromachining techniques. The probe provides capabilities to record multiple thalamic evoked FPs and multiunit activities simultaneously. (C) 2004 Elsevier B.V. All rights reserved.
Multichannel recording provides integral information about electrical brain activities at one instant in time. In this study, multielectrode probes were fabricated to record the thalamic field potentials (FPs) responding to the electrical stimulation of nerve at the rat tail. At first, the number of sweeps used to form the evoked FP average and the spatial sampling density were determined by using cross-correlation functions, which were then statistically analyzed. The difference was significant at P<0.05, if the number of sweeps for averaging was more than 50 and the spatial interval between two consecutive recording sites was less than 50 μm in the anteroposterior, mediolateral and ventrodorsal directions. The responsive area was distributed vertically in the thalamus (ventral posterior lateral (VPL) nucleus); therefore, the recording sites were arranged in one linear array. Sixteen recording sites, which were 50 μm apart from each other, were distributed in the ventrodorsal direction. A 16-channel silicon probe was fabricated by using a standard photolithography process and laser micromachining techniques. The probe provides capabilities to record multiple thalamic evoked FPs and multiunit activities simultaneously. © 2004 Elsevier B.V. All rights reserved.
Subjects
Cross-correlation; Field potential; Laser micromachining; Multielectrode probe; Thalamus
Other Subjects
silicon; analytic method; animal experiment; article; brain depth stimulation; controlled study; electric potential; electrode; evoked response; laser; male; mechanical probe; nonhuman; photolithography; priority journal; rat; recording; thalamus; thalamus ventral nucleus; Animals; Evoked Potentials; Lasers; Male; Microelectrodes; Micromanipulation; Rats; Rats, Wistar; Thalamus
Type
journal article
File(s)
Loading...
Thumbnail Image
Name

09.pdf

Size

564.39 KB

Format

Adobe PDF

Checksum

(MD5):072aed281bb5f770bfa956cf09ccd6db

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science