Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. Medical Device and Imaging / 醫療器材與醫學影像研究所
  4. Dynamic PET reconstruction using the kernel method with non-local means denoising
 
  • Details

Dynamic PET reconstruction using the kernel method with non-local means denoising

Journal
Biomedical Signal Processing and Control
Journal Volume
68
Date Issued
2021-07-01
Author(s)
HSUAN-MING HUANG  
DOI
10.1016/j.bspc.2021.102673
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/569313
URL
https://scholars.lib.ntu.edu.tw/handle/123456789/562298
Abstract
Non-local means with a spatiotemporal search window (NLM-ST) has been developed to denoise dynamic positron emission tomography (PET) images. The improved image quality, however, may not be good enough to generate reliable parametric images. In this work, we propose an iterative reconstruction algorithm which aims to improve the quality of dynamic PET images by incorporating NLM-ST denoising directly within the kernelized expectation-maximization (KEM) reconstruction algorithm. Since the NLM-ST denoising was employed after each KEM update, the proposed algorithm was called NLM-ST-AU-KEM. Computer simulations were conducted to evaluate the performance of the proposed reconstruction algorithm, and the results were compared to KEM with a post-reconstruction NLM-ST denoising filter (KEM + NLM-ST). The root mean squared errors (RMSE) of the dynamic PET images reconstructed using the KEM algorithm were increased after 40 iterations. Both the NLM-ST-AU-KEM and the KEM + NLM-ST methods could achieve stable RMSE values after 50 iterations, but the former had lower RMSE values. Compared to the proposed NLM-ST-AU-KEM method, the KEM + NLM-ST method tended to over-smooth dynamic PET images and parametric images. For K1 and Ki, the proposed NLM-ST-AU-KEM method had lower bias but higher variance than the KEM + NLM-ST method. For k2 and k3, the proposed NLM-ST-AU-KEM method had higher variance than the KEM + NLM-ST method, but the higher variance could be reduced by applying a kernel-based post-filtering method to the NLM-ST-AU-KEM-generated parametric images. NLM-ST denoising during image reconstruction seems to be a better strategy than that after image reconstruction.
Subjects
Dynamic PET reconstruction | Kernel | Non-local means denoising
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science