Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Applied Mechanics / 應用力學研究所
  4. An anatomical model of the cerebral vasculature and the autoregulation of cerebral blood flow
 
  • Details

An anatomical model of the cerebral vasculature and the autoregulation of cerebral blood flow

Journal
IFMBE Proceedings
Journal Volume
31 IFMBE
Pages
446-449
Date Issued
2010
Author(s)
Lucas C.
Payne S.J.
STEPHEN JOHN PAYNE  
DOI
10.1007/978-3-642-14515-5_114
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77957990625&doi=10.1007%2f978-3-642-14515-5_114&partnerID=40&md5=306c514f7aeaafba55f96ccab0a3b8a6
https://scholars.lib.ntu.edu.tw/handle/123456789/611830
Abstract
With the advent of detailed brain imaging techniques, considerable information can be gathered about the anatomy and physiology of the human cerebral vasculature. This enables us to move beyond simple lumped parameter models of the vasculature towards more detailed spatial models: this is critical in a number of brain diseases, such as stroke, where the brain's response is strongly dependent upon the local vascular properties. However, this is not yet understood within the context of a whole brain model, since the local response is influenced by both local and global processes. Here we describe a method of determining geometry in a branching cerebral vascular network. We use available pressure and velocity data to optimize the geometry (diameter and length) in order to fulfill the criterion that flow is conserved in a bifurcating network. The geometry depends only on the capillary diameter and the number of generations of vessels. We then use the pressure and flow relationship set out by Boas [1] along with Poiseuille's law to determine flow and pressure at every point in the system. Finally, data for oxygen concentration from Vovenko [3] is used to establish the correct parameter values to use in the mass transport equation in order to calculate the oxygen concentration in the model. The established geometry can be used as a basis for developing an improved model of the cerebral vasculature which incorporates autoregulation. This paper uses Arciero's proposition [4] that a signal is conducted upstream to influence vessels. We will also be able to investigate alternative network sizes and the effect of changing part of the geometry, or changing flow on the rest of the network. ? 2010 International Federation for Medical and Biological Engineering.
Subjects
Alternative network
Anatomical models
ATP
Autoregulations
Bifurcating networks
Brain disease
Brain imaging techniques
Cerebral blood flow
Flow relationship
Improved models
Local response
Lumped parameter models
Mass transport equation
oxygen concentration
Oxygen concentrations
Parameter values
Spatial models
Vascular network
Vasculature
Biomechanics
Biomedical engineering
Biophysics
Brain models
Computational geometry
Concentration (process)
Imaging techniques
Oxygen
Technical presentations
Brain
SDGs

[SDGs]SDG3

Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science