Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electronics Engineering / 電子工程學研究所
  4. Novel wire density driven full-chip routing for CMP variation control
 
  • Details

Novel wire density driven full-chip routing for CMP variation control

Journal
IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
Pages
831-838
Date Issued
2007
Author(s)
Chen, H.-Y.
Chou, S.-J.
Wang, S.-L.
YAO-WEN CHANG  
DOI
10.1109/ICCAD.2007.4397368
URI
http://www.scopus.com/inward/record.url?eid=2-s2.0-50249165989&partnerID=MN8TOARS
http://scholars.lib.ntu.edu.tw/handle/123456789/332272
Abstract
As nanometer technology advances, the post-CMP dielectric thickness variation control becomes crucial for manufacturing closure. To improve CMP quality, dummy feature filling is typically performed by foundries after the routing stage. However, filling dummy features may greatly degrade the interconnect performance and lead to explosion of mask data. It is thus desirable to consider wire-density uniformity during routing to minimize the side effects from aggressive post-layout dummy filling. In this paper, we present a new full-chip grid-based routing system considering wire density for reticle planarization enhancement. To fully consider wire distribution, the router applies a novel two-pass, top-down planarity-driven routing framework, which employs a new density critical area analysis based on Voronoi diagrams and incorporates an intermediate stage of density-driven layer/track assignment based on incremental Delaunay triangulation. Experimental results show that our methods can achieve more balanced wire distribution than state-of-the-art works. © 2007 IEEE.
Other Subjects
Design; Masks; Nanotechnology; VLSI circuits; Computer-aided design; Critical area analysis; Delaunay triangulation; Density uniformity; Dielectric thicknesses; Full-chip routing; Grid-based routing; Interconnect performance; Intermediate stage; International conferences; Mask data; Nanometer technologies; Planarity; Planarization; Side effects; Top-down; Voronoi diagrams; Wire
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science