Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Biomechatronics Engineering / 生物機電工程學系
  4. Innovative Fabrication of Metal Alloy Structures via Laser-Induced Forward Transfer on Flexible Substrates
 
  • Details

Innovative Fabrication of Metal Alloy Structures via Laser-Induced Forward Transfer on Flexible Substrates

Journal
Small Methods
Date Issued
2023-01-01
Author(s)
Das, Ankit
CHIEN-FANG DING  
DOI
10.1002/smtd.202301429
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180866797&doi=10.1002%2fsmtd.202301429&partnerID=40&md5=ac81ccb7fc1ebd706d8c27bb3dc70582
https://scholars.lib.ntu.edu.tw/handle/123456789/638533
URL
https://api.elsevier.com/content/abstract/scopus_id/85180866797
Abstract
Laser-induced forward transfer is a contactless, nozzle free process which enables accurate, precise and fast development of 3D structures. However, a number of shortcomings such as shockwave generation, poor adhesion to receiver substrates and uniform depositions limit LIFT to be utilized. Therefore, this research tends to put forward easy and effective solutions for successful mitigation of the LIFT limitations. Receiver surface modifications and low-pressure conditions are introduced through laser surface texturing (LST) and a vacuum pump. A number of textures and orientations are investigated for determining the optimal copper (Cu) deposition. Furthermore, utilization of the same laser system for LST enables the manufacturing process cost and time effective. In addition to Cu depositions, additive layers of silver (Ag) and platinum (Pt) are deposited. Finally, Ag and Pt micropillars are fabricated on their respective additive layers leading to formation of Cu-Ag and Cu-Pt alloys structure. Subsequently, electrical and material characterizations are made to validate for potential applications. Experimental evidence shows greater adhesion with electrical properties for LST-based LIFT in low pressure conditions. Finally, an energy analysis is performed based on theoretical and finite element methods (FEM) to gain greater insights into mechanics of the LIFT process.
Subjects
additive manufacturing (AM) | composite/alloy formation | energy analysis | laser surface texturing (LST) | laser-induced forward transfer (LIFT)
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science