Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Biofilm with highly heterogeneous interior structure for pollutant removal: Cell distribution and manipulated mass transport
 
  • Details

Biofilm with highly heterogeneous interior structure for pollutant removal: Cell distribution and manipulated mass transport

Journal
Bioresource Technology
Journal Volume
343
Date Issued
2022
Author(s)
Chen L
Wang X.-D
Lee D.-J.
DUU-JONG LEE  
DOI
10.1016/j.biortech.2021.125913
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85116900275&doi=10.1016%2fj.biortech.2021.125913&partnerID=40&md5=7517943dd027444179ba46b53d3e0304
https://scholars.lib.ntu.edu.tw/handle/123456789/598192
Abstract
Biofilm wastewater treatment had been applied in practice. Conventionally the biofilm was modeled as a uniform structure to simplify the analysis. This study for the first time established a three-dimensional biofilm model with distributions separating living cells, Extracellular polymeric substances (EPS) and pores, based on which the local fluid flow velocity and pollutant diffusion and reaction fluxes inside the biofilm were numerically evaluated. Both the uniform structured and previously proposed heterogeneous models had been confirmed to overestimate the performances of a biofilm for wastewater treatment. The survival strategies of living cells in biofilm were discussed. Besides exposing to fresh pollutants for maximizing pollutant uptake, the tendency to form small aggregates of cells for shortening diffusion length so furnishing the pollutant with reduced diffusional resistance to living cells was also for the first time noted. This communication advanced the knowledge to comprehend the detailed processes in biofilm. ? 2021 Elsevier Ltd
Subjects
Convection
Diffusion
Interior structure
Multiple staining
Performance
Cells
Cytology
Flow velocity
Pollution
Wastewater treatment
Biofilm models
Cell distribution
Extracellular
Living cell
Pollutants removal
Uniform structure
Biofilms
biofilm
cell
mass transport
performance assessment
pollutant removal
wastewater treatment
article
cellular distribution
diffusion
fluid flow
pollutant
polymerization
thermodynamics
velocity
waste water management
bioreactor
Bioreactors
Environmental Pollutants
Extracellular Polymeric Substance Matrix
SDGs

[SDGs]SDG6

[SDGs]SDG11

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science