Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Matching Users and Items for Transfer Learning in Collaborative Filtering
 
  • Details

Matching Users and Items for Transfer Learning in Collaborative Filtering

Date Issued
2013
Date
2013
Author(s)
Li, Chung-Yi
URI
http://ntur.lib.ntu.edu.tw//handle/246246/261555
Abstract
This paper investigates the possibility of transferring information between homogeneous datasets of similar users and items but both user correspondence and item correspondence are unknown. More specifically, we assume there are two rating matrices that model the same kind of preferences, and there is a significant degree of overlap between the two user sets and between the two item sets. Our goal is to find out the user correspondence and item correspondence between the two rating matrices, and utilize the correspondence for exploiting the information of one matrix to improve the quality of rating prediction in the other matrix. For finding out the correspondence, we factorize both rating matrices and exploit the latent factors to identify the users and items. The algorithm for solving the correspondence is initially based on singular value decomposition and nearest neighbor search, and then we point out the drawbacks of singular value decomposition and use another formulation to refine its result. Finally, we introduce a simple modification of regular matrix factorization model for transferring information across matrices with the obtained correspondence. In our experiment, we show that it is possible to solve the correspondence with decently high accuracy, and even with non-perfect correspondence obtained from our method, it is still possible to improve the quality of rating prediction.
Subjects
協同式過濾
轉移學習
矩陣分解
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-102-R00922051-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):1d58cfd806347e0d0a4975db82b811ec

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science