Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Management / 管理學院
  3. Information Management / 資訊管理學系
  4. Mining Closed Patterns in Time-Series Databases
 
  • Details

Mining Closed Patterns in Time-Series Databases

Date Issued
2010
Date
2010
Author(s)
Wu, Huei-Wen
URI
http://ntur.lib.ntu.edu.tw//handle/246246/251483
Abstract
Closed pattern mining is a critical research issue in the area of knowledge discovery and data mining with the aim of discovering interesting patterns hidden in a large amount of data. In this dissertation, we propose three algorithms, called CMP (Closed Multi-sequence Patterns mining), CFP (Closed Flexible Patterns mining), and CNP (multi-resolution Closed Numerical Patterns mining) to solve various issues extended from the problem of mining closed patterns. The CMP algorithm is designed to find closed patterns in a multi-sequence time-series database. The CFP algorithm is developed to solve the problem of mining closed flexible patterns in a time-series database. Both the CMP and CFP algorithms involve a transformation of time-series sequences into symbolic sequences in the first phase. Although analyzing on symbolic sequences is ideal to reduce the effect of noises and ease the mining process, these approaches may lead to pattern lost and the sequences supporting the same pattern may look quite different. To overcome the problem raised in symbolic sequence analysis, the CNP algorithm is proposed to mine closed patterns without any transformation from time-series sequences to symbolic sequences. The method also employs the Haar wavelet transform to discover patterns in the multiple resolutions in order to provide different perspectives on datasets. All the proposed algorithms have employed the concept of projected databases to localize the pattern extension that leads to a significant runtime improvement. Moreover, effective closure checking schemes and pruning strategies are devised respectively in each of the proposed algorithms to avoid generating redundant candidates. The experimental results show that the CMP algorithm significantly outperforms the modified Apriori and BIDE algorithms. The CFP algorithm achieves better performance than the modified Apriori algorithm in all cases. And, the CNP algorithm has demonstrated a significant runtime improvement in comparison to the modified A-Close algorithm.
Subjects
Data mining
Closed pattern
Time-series database
File(s)
Loading...
Thumbnail Image
Name

ntu-99-D95725007-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):6953249c6b3b083e9cb9bbaf4f579626

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science