Surfactin from Bacillus subtilis induces apoptosis in human oral squamous cell carcinoma through ROS-regulated mitochondrial pathway
Journal
Journal of Cancer
Journal Volume
11
Journal Issue
24
Pages
7253
Date Issued
2020
Author(s)
Abstract
Recently, ambient air particulate matter (PM) has been shown to increase the risk of oral cancer. The most common malignant tumor in the oral cavity is oral squamous cell carcinoma (OSCC). Recent studies have revealed that surfactin, a cyclic lipopeptide generated by Bacillus subtilis, has anti-inflammatory and anti-cancer properties. However, the exact anti-cancer effects of surfactin on human OSCC and underlying molecular mechanisms remain largely unknown. In the present study, we found that treatment of SCC4 and SCC25 cells (human OSCC cell lines) with surfactin reduced the viability of SCC4 and SCC25 cells by induction of apoptosis. Surfactin-induced apoptosis was associated with caspase activation and poly(ADP-ribose) polymerase (PARP) cleavage and was regulated by the mitochondrial pathway, exemplified by mitochondrial depolarization, mitochondrial-derived reactive oxidative species (ROS) production, cytochrome c release, up-regulation of Bad and Bax, and down-regulation of Bcl-2. Surfactin induced NADPH oxidase-dependent ROS generation, which appeared essential for the activation of the mitochondrial pathway. Surfactin-induced mitochondrial-derived ROS generation was associated with JNK1/2 activation. After treatment with surfactin, ROS caused JNK1/2-dependent cell death of SCC4 and SCC25 cells. Taken together, our findings suggest that surfactin induces mitochondria associated apoptosis of human OSCC cell lines, and surfactin may be a potential chemotherapeutic agent for future OSCC treatment.
Subjects
apoptosis; oral squamous cell carcinoma; particulate matter; reactive oxidative species; surfactin
Apoptosis; Oral squamous cell carcinoma; Particulate matter; Reactive oxidative species; Surfactin
SDGs
Other Subjects
caspase; cytochrome c; mitogen activated protein kinase 9; nicotinamide adenine dinucleotide adenosine diphosphate ribosyltransferase; protein BAD; protein Bax; protein bcl 2; reactive oxygen metabolite; reduced nicotinamide adenine dinucleotide phosphate oxidase; stress activated protein kinase 1; surfactin; apoptosis; Article; Bacillus subtilis; cell death; cell viability; controlled study; down regulation; enzyme activation; enzyme phosphorylation; human; human cell; membrane depolarization; mitochondrial membrane potential; mitochondrion; mouth squamous cell carcinoma; oral squamous cell carcinoma cell line; protein cleavage; SCC-25 cell line; SCC-4 cell line; signal transduction; upregulation
Publisher
IVYSPRING INT PUBL
