Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Agricultural Chemistry / 農業化學系
  4. Evolution of As speciation with depth in a soil profile with a geothermal As origin
 
  • Details

Evolution of As speciation with depth in a soil profile with a geothermal As origin

Journal
Chemosphere
Journal Volume
241
Journal Volume
241
Start Page
124956
ISSN
00456535
Date Issued
2020-02
Author(s)
Yang, Puu-Tai
Wu, Wen-Jing
Hashimoto, Yohey
Huang, Jang-Hung
Huang, Shiuh-Tsuen
ZENG-YEI HSEU  
SHAN-LI WANG  
DOI
10.1016/j.chemosphere.2019.124956
URI
https://www.scopus.com/pages/publications/85073025615?inward
https://scholars.lib.ntu.edu.tw/handle/123456789/561308
Abstract
High contents of arsenic were detected in soils in Guandu plain, northwest Taiwan. To determine the sources and speciation of As in the soils, the depth profiles of soil properties, elemental composition and As speciation were investigated. The As concentrations in the soil profile ranged from 152 to 1222 mg kg−1, with the highest concentration at the depth of 70–80 cm. The As distribution was found to be positively correlated to Fe, Pb, and Ba. The As(V)-adsorbed ferrihydrite and scorodite were the predominant phases in the top layers (<50 cm), while beudantite was the predominant phase below 50 cm along with As(III)- and As(V)-adsorbed ferrihydrite as the minor components. The results of sequential extraction showed that As-associated with noncrystalline and crystalline Fe/Al hydrous oxides and residual phases were predominant at the depths of 0–60, 60–100 and 100–140 cm, respectively, indicating an increasing As recalcitrance with soil depth. Based on the soil properties, and elemental and mineral compositions at different soil depths, the origin of beudantite in the soils was likely allogenic rather than authigenic or anthropogenic. The formation of scorodite in the surface soils was suggested to be transformed from beudantite. As-associated Fe hydrous oxides may be contributed by the progressive dissolution of beudantite and scorodite, and the continuous influxes of As and Fe. While Fe hydrous oxides were able to immobilize As during the dissolution of As-bearing minerals, the increase of As mobility in soils may imply an increase in the environmental risk of As over time.
Subjects
Arsenic speciation
As K-Edge X-ray absorption spectroscopy
Geothermal activities
Sequential extraction
Soil profile
Publisher
Elsevier Ltd
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science