Options
Edge-trimmed nanogaps in 2D materials for robust, scalable, and tunable lateral tunnel junctions
Journal
Nanomaterials
Journal Volume
11
Journal Issue
4
Date Issued
2021
Author(s)
Nguyen H.-T., Nguyen Y., Su Y.-H., Hsieh Y.-P., Hofmann M.
Abstract
Lateral tunnel junctions are fundamental building blocks for molecular electronics and novel sensors, but current fabrication approaches achieve device yields below 10%, which limits their appeal for circuit integration and large-scale application. We here demonstrate a new approach to reliably form nanometer-sized gaps between electrodes with high precision and unprecedented control. This advance in nanogap production is enabled by the unique properties of 2D materials-based contacts. The large difference in reactivity of 2D materials’ edges compared to their basal plane results in a sequential removal of atoms from the contact perimeter. The resulting trimming of exposed graphene edges in a remote hydrogen plasma proceeds at speeds of less than 1 nm per minute, permitting accurate control of the nanogap dimension through the etching process. Carrier transport measurements reveal the high quality of the nanogap, thus-produced tunnel junctions with a 97% yield rate, which represents a tenfold increase in productivity compared to previous reports. Moreover, 70% of tunnel junctions fall within a nanogap range of only 0.5 nm, representing an unprecedented uniformity in dimension. The presented edge-trimming approach enables the conformal narrowing of gaps and produces novel one-dimensional nano-trench geometries that can sustain larger tunneling currents than conventional 0D nano-junctions. Finally, the potential of our approach for future electronics was demonstrated by the realization of an atom-based memory. ? 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Type
journal article