Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Civil Engineering / 土木工程學系
  4. Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods
 
  • Details

Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods

Journal
Journal of Hydrology
Journal Volume
372
Journal Issue
1-4
Pages
17-29
Date Issued
2009
Author(s)
GWO-FONG LIN  
Chen, G.-R.
Huang, P.-Y.
Chou, Y.-C.
DOI
10.1016/j.jhydrol.2009.03.032
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/435893
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-65649123113&doi=10.1016%2fj.jhydrol.2009.03.032&partnerID=40&md5=98a1ebcc23e4a3c99f03133461da36b4
Abstract
In this paper, effective reservoir inflow forecasting models based on the support vector machine (SVM), which is a novel kind of neural networks (NNs), are proposed. Based on statistical learning theory, the SVMs have three advantages over back-propagation networks (BPNs), which are the most frequently used convectional NNs. Firstly, SVMs have better generalization ability. Secondly, the architectures and the weights of the SVMs are guaranteed to be unique and globally optimal. Finally, SVMs are trained much more rapidly. An application is conducted to clearly demonstrate these three advantages. The results indicate that the proposed SVM-based models are more well-performed, robust and efficient than the existing BPN-based models. In addition to using SVMs instead of BPNs, typhoon characteristics, which are seldom regarded as key input for inflow forecasting, are added to the proposed models to further improve the long lead-time forecasting during typhoon-warning periods. A comparison between models with and without typhoon characteristics is also presented to confirm that the addition of typhoon characteristics significantly improves the forecasting performance for long lead-time forecasting. In conclusion, the typhoon characteristics should be used as input to the reservoir inflow forecasting. The proposed SVM-based models are recommended as an alternative to the existing models because of their accuracy, robustness and efficiency. The proposed modeling technique is expected to be useful to improve the reservoir inflow forecasting. © 2009 Elsevier B.V. All rights reserved.
Subjects
Artificial neural networks; Reservoir inflow forecasting; Reservoir operation system; Support vector machines; Typhoon characteristics
SDGs

[SDGs]SDG13

Other Subjects
Artificial neural networks; Backpropagation network; Effective reservoir; Forecasting models; Forecasting performance; Generalization ability; Key input; Long leads; Modeling technique; Reservoir inflow; Reservoir inflow forecasting; Reservoir operation system; Statistical learning theory; Typhoon characteristics; Backpropagation; Education; Forecasting; Gears; Image retrieval; Multilayer neural networks; Vectors; Support vector machines; artificial neural network; back propagation; climate modeling; comparative study; forecasting method; inflow; performance assessment; reservoir; typhoon; warning system; weather forecasting
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science