Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Weakly Supervised Salient Object Detection by Learning A Classifier-Driven Map Generator
 
  • Details

Weakly Supervised Salient Object Detection by Learning A Classifier-Driven Map Generator

Journal
IEEE Transactions on Image Processing
Journal Volume
28
Journal Issue
11
Pages
5435-5449
Date Issued
2019
Author(s)
Hsu, Kuang-Jui
Lin, Yen-Yu
YUNG-YU CHUANG  
DOI
10.1109/TIP.2019.2917224
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/490715
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071434280&doi=10.1109%2fTIP.2019.2917224&partnerID=40&md5=3d89db74ddb712269d10939c3a438400
Abstract
Top-down saliency detection aims to highlight the regions of a specific object category, and typically relies on pixel-wise annotated training data. In this paper, we address the high cost of collecting such training data by a weakly supervised approach to object saliency detection, where only image-level labels, indicating the presence or absence of a target object in an image, are available. The proposed framework is composed of two collaborative CNN modules, an image-level classifier and a pixel-level map generator. While the former distinguishes images with objects of interest from the rest, the latter is learned to generate saliency maps by which the images masked by the maps can be better predicted by the former. In addition to the top-down guidance from class labels, the map generator is derived by also exploring other cues, including the background prior, superpixel- and object proposal-based evidence. The background prior is introduced to reduce false positives. Evidence from superpixels helps preserve sharp object boundaries. The clue from object proposals improves the integrity of highlighted objects. These different types of cues greatly regularize the training process and reduces the risk of overfitting, which happens frequently when learning CNN models with few training data. Experiments show that our method achieves superior results, even outperforming fully supervised methods. © 1992-2012 IEEE.
Subjects
convolutional neural networks; Top-down object saliency detection; weakly supervised learning
Other Subjects
Neural networks; Object recognition; Superpixels; Supervised learning; Annotated training data; Convolutional neural network; Object categories; Saliency detection; Salient object detection; Supervised methods; Top-down guidances; Weakly supervised learning; Object detection; article; classifier; false positive result; learning; rest
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science