Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Biomechatronics Engineering / 生物機電工程學系
  4. Boiling Enhancement by Using Nanofluid
 
  • Details

Boiling Enhancement by Using Nanofluid

Date Issued
2010
Date
2010
Author(s)
Lee, Chih-Wei
URI
http://ntur.lib.ntu.edu.tw//handle/246246/247731
Abstract
The pool boiling behavior of water was experimently studied over a TiO2 nanoparticle-coated heater. The nanoparticle-coated wires were produced by boiling processes which submerge a pure nickel wire into nanofluid. Making nanoparticle-coated wires included two parameters: concentration of the nanofluids and heat flux.The concentrations of the nanofluids were 0.01%wt., 0.1%wt., and 1%wt., and the heat flux were 0 kW/m2, 500 kW/m2 and 1000 kW/m2. Furthermore, the contact angle measurement, SEM and EDS analysis were conducted to discuss the features of nanoparticle-coated wires.
The SEM and EDS results showed that nanoparticles were deposited on the heating surface during boiling processes. Besides, the thickness of the nanoparticle-coated surface was enhanced as concentrations and heat flux increased. The boiling curves indicated that heat transfer coefficient of nanoparticle-coated wires decreased as a result of thermal resistance which was generated by nanoparticle-coated surface. However, the CHF was enhanced due to its hydrophilic surface which measured by contact angle experiments, and the maximum CHF enhancement rate was about 87%. It is believed that CHF enhancement is mainly caused by the nanoparticle coating on the heating surface.
To test the reliability of nanoparticle-coated wire, boiling curve comparisons between nanoparticle-coated wire and used nanoparticle-coated wire were performed. The CHF and heat transfer coefficient decreased as using time increased. The modification of the heating surface was the main reason that heat transfer coefficient decreased. However, the relationship between contact angle and CHF disappear. Thus, the reason of CHF decrease is still unknown.
Subjects
Pool boiling
nanofluid
nanoparticle-coated wire
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-99-R97631019-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):9f34872bcfbb6ee8eac80df06911fe3e

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science