Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Applied Mechanics / 應用力學研究所
  4. Feature selection for computerized fetal heart rate analysis using genetic algorithms
 
  • Details

Feature selection for computerized fetal heart rate analysis using genetic algorithms

Journal
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Pages
445-448
Date Issued
2013
Author(s)
Xu L.
Georgieva A.
Redman C.W.G.
Payne S.J.
STEPHEN JOHN PAYNE  
DOI
10.1109/EMBC.2013.6609532
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84886544874&doi=10.1109%2fEMBC.2013.6609532&partnerID=40&md5=22c7183080233a2e718175a0d244cb4b
https://scholars.lib.ntu.edu.tw/handle/123456789/611796
Abstract
During birth, timely and accurate diagnosis is needed in order to prevent severe conditions such as birth asphyxia. The fetal heart rate (FHR) is often monitored during labor to assess the condition of fetal health. Computerized FHR analysis is needed to help clinicians identify abnormal patterns and to intervene when necessary. The objective of this study is to apply Genetic Algorithms (GA) as a feature selection method to select a best feature subset from 64 FHR features and to integrate these best features to recognize unfavorable FHR patterns. The GA was trained on 408 cases and tested on 102 cases (both balanced datasets) using a linear SVM as classifier. 100 best feature subsets were selected according to different splits of data; a committee was formed using these best classifiers to test their classification performance. Fair classification performance was shown on the testing set (Cohen's kappa 0.47, proportion of agreement 73.58%). To our knowledge, this is the first time that a feature selection method has been tested for FHR analysis on a database of this size. ? 2013 IEEE.
Subjects
Abnormal patterns
Balanced datasets
Birth asphyxias
Classification performance
Cohen's kappas
Feature selection methods
Feature subset
Fetal heart rate
Genetic algorithms
Neonatal monitoring
Diagnosis
algorithm
devices
factual database
female
fetus
fetus heart rate
fetus monitoring
human
labor
pH
physiology
pregnancy
procedures
reproducibility
signal processing
support vector machine
Algorithms
Databases, Factual
Female
Fetal Monitoring
Fetus
Heart Rate, Fetal
Humans
Hydrogen-Ion Concentration
Labor, Obstetric
Pregnancy
Reproducibility of Results
Signal Processing, Computer-Assisted
Support Vector Machines
SDGs

[SDGs]SDG3

[SDGs]SDG8

Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science