Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. A fast CLSM undersampling image reconstruction framework with precise stage positioning for random measurements
 
  • Details

A fast CLSM undersampling image reconstruction framework with precise stage positioning for random measurements

Journal
2017 Asian Control Conference, ASCC 2017
Journal Volume
2018-January
Pages
1122-1127
Date Issued
2017
Author(s)
Chang, Kuang-Yao
Liu, Yi-Lin
Liu, Da-Wei
Chou, Meng-Hao
Wu, Jim-Wei
LI-CHEN FU  
DOI
10.1109/ASCC.2017.8287328
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/488959
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047534429&doi=10.1109%2fASCC.2017.8287328&partnerID=40&md5=9d023b73a836236b16f686fe529a1d87
Abstract
Confocal laser scanning microscopy (CLSM) is a powerful non-destructive optical measurement system. Recently, compressive sensing (CS) is applied to the field of CLSM for high speed scan by reducing the number of sampled data required to reconstruct an accurate imaging information. However, the CS recovery algorithm employed in CLSM applications is iteration-based optimization method of which computation complexity is relatively high. In this paper, we propose a non-iteration-based deep residual convolutional neural network compressive sensing reconstruction framework (DRCNN-CSR) in end-to-end manner. Both of the computation time and the quality of reconstructed image are largely improved with this novel model. The experiment results demonstrate that our proposed method outperforms other existing reconstruction algorithm under a wide range of undersampling rates with respect to reconstruction quality comparison. In addition, CS is based on predefined random location sampling; consequently, the fast and precise positioning of scanner is required. We design the adaptive control algorithm for a piezo-driven stage to implement the CS approach in CLSM imaging; the stability of our control system design is proved by Lyapunov theorem. © 2017 IEEE.
Event(s)
2017 11th Asian Control Conference, ASCC 2017
Other Subjects
Adaptive control systems; Compressed sensing; Convolutional neural networks; Deep neural networks; Image enhancement; Iterative methods; Optical data processing; Adaptive control algorithms; Computation complexity; Confocal laser scanning microscopy; Fast and precise positioning; Optical measurement systems; Quality of reconstructed images; Reconstruction algorithms; Reconstruction frameworks; Image reconstruction
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science