Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. The Development of Biodegradable Polylactic Acid Nanocomposite Materials Utilized in Engineering Plastic
 
  • Details

The Development of Biodegradable Polylactic Acid Nanocomposite Materials Utilized in Engineering Plastic

Date Issued
2012
Date
2012
Author(s)
Chou, Hung-Chia
URI
http://ntur.lib.ntu.edu.tw//handle/246246/252175
Abstract
This study of polymer nanocomposites was focused on the discussion of feasibility that PLA based plastics that can be used on automobile or furniture. This experimental research have been set on the discussion of crystallinity, mechanical and thermal properties of thermoplastic polyurethane (TPU) toughened PLA/ montmorillonite (MMT) nanocomposites, and the goal of this research is to improve their applicability and sustainability to reach the requirements of application on commercial products without much sacrifice in their biodegradability. The tensile test and flexural test showed that PLA blending with TPU in 10 wt %, talc in 4 wt%, and OMC in 2 wt% owes the highest modulus and strength without much sacrifice for elongation while the result form impact test show that the specimen of similar formula without OMC displays the highest impact resistance of 33.07 J/m. The hardness test showed similar tendency with the results of elastic modulus. The heat distortion temperature (HDT) tests showed that the specimens without annealing would not much alter their HDT even adding inorganic fillers while the specimens with thermal treatment would dramatically raise the HDT, which may come from the increase of crystallinity after thermal treatment. The observation under electron microscope demonstrated that the incorporation of inorganic fillers would dramatically alter the heterogeneous morphology of PLA/TPU blending. On the other hand, the incorporation of glass fiber in these nanocomposites showed the significant enhancement of mechanical strength with no interference on their thermal behaviors. In the conclusion, this research provides a possible route to prepare biodegradable engineering plastics in traditional method.
Subjects
Polylactide (PLA)
Thermoplastic polyurethane (TPU)
Montmorillonite (MMT)
Nanocomposites
Glass fiber
Engineering plastics
Biodegradable plastics
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-101-R99524015-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):83eefbf9fa0a2d99080b78c032755342

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science