Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Multiple Text Style Transfer by using Word-level Conditional Generative Adversarial Network with Two-Phase Training.
 
  • Details

Multiple Text Style Transfer by using Word-level Conditional Generative Adversarial Network with Two-Phase Training.

Journal
EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
Pages
3579-3584
Date Issued
2019
Author(s)
Lai, Chih-Te
Hong, Yi-Te
Chen, Hong-You
Lu, Chi-Jen
Lin, Shou-De
SHOU-DE LIN  
DOI
10.18653/v1/D19-1366
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/489773
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084295185&partnerID=40&md5=4945c5838f80a0aafb03aad4ea4d4949
URL
https://doi.org/10.18653/v1/D19-1366
Abstract
The objective of non-parallel text style transfer is to alter specific attributes (e.g. sentiment, mood, tense, politeness, etc) of a given text while preserving unrelated content. Adversarial training is a popular method to ensure the transferred sentences have the desired target styles. However, previous works often suffer from content leaking problem. In this paper, we propose a new adversarial training model with a word-level conditional architecture and a two-phase training procedure. By using a style-related condition architecture before generating a word, our model is able to maintain style-unrelated words while changing the others. By separating the training procedure into reconstruction and transfer phases, our model is able to balance the reconstruction and adversarial losses. We test our model on polarity sentiment transfer and multiple-attribute transfer tasks. The empirical results show that our model achieves comparable evaluation scores in both transfer accuracy and fluency but significantly outperforms other state-of-the-art models in content compatibility on three real-world datasets. © 2019 Association for Computational Linguistics
Other Subjects
Network architecture; Adversarial networks; Multiple attributes; Parallel text; Real-world datasets; State of the art; Training model; Training procedures; Word level; Natural language processing systems
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science