Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Scale up of a Spinning Disk Reactor for Preparing Fine Powder in a Continuous Mode
 
  • Details

Scale up of a Spinning Disk Reactor for Preparing Fine Powder in a Continuous Mode

Date Issued
2011
Date
2011
Author(s)
Wang, Yao-Hsuan
URI
http://ntur.lib.ntu.edu.tw//handle/246246/252250
Abstract
Nano/micro particles, which have excellent physical and chemical properties, can widely applied to various industries, such as biological, electrical, and chemical, due to their small size and imperfect surface structure, which are different from that of bulk materials. The common methods for preparing particles include milling and precipitation. For the traditional milling method, the products are usually contaminated or the crystal lattice of products is disrupted. The precipitation method is most popular in industry for its simplicity, low cost, and ease of manipulation. But the reactive precipitation method using a batch stirred vessel is hard to improve the product quality and production capacity. The particle size and shape are difficult to control because of the poor mixing efficiency. To overcome these problems, an efficient method of rotation packed bed, which is one of the high-gravity equipment, has been applied by Chen et al. (2000) to synthesize CaCO3 nanoparticles in a recycle mode. The reaction time in a rotating packed bed is around 5- 15 min for 1 L reactant aqueous solution. At the same operating conditions, the reaction time in a conventional stirred reactor is eight times as large as that in a rotating packed bed. It is apparent that recycle operation in a high-gravity reactor has shortened the reaction time. If the recycle operation is replaced by the continuous operation, the production rate will be enhanced. There are two types of high-gravity equipment, i.e. rotation packed bed and spinning disk. The latter is better for preparing particles due to less chance of particle collision to form agglomerates. In our laboratory, several compounds have been successfully synthesized using the SDR in a continuous mode, such as CaCO3, Mg(OH)2, Ag , AgI, and SMZ (drug). In the silver particle preparation, AgNO3 and PVP (protecting agent) were dissolved in an aqueous solution, and then the solution was mixed with an aqueous solution of glucose and NaOH to produce Ag particles through a reducing reaction. In the drug precipitation reaction, the drug and protecting agent were first dissolved in an alkaline solution, and an acidic solution was added and mixed to change the solubility of solution, and then drug particles were recrystallized. However, the scale up of the SDR for preparing organic and inorganic particles in a continuous mode has not been discussed and compared. In this study, the disk diameter was scaled up to 50cm to increase the retention time and to improve the yield of silver product. In the drug particle preparation, drugs were recrystallized with the larger SDR fitted with circular tube liquid distributors to obtain smaller particles. Drugs of p-aminosalicylic acid (PAS) and glilbenclamide (GBM) were chosen in this study of continuous operation. The main theme of this research was to discuss various operation conditions on particle size and yield, and to compare the performance of organic and inorganic systems. The equipment consists of a spinning disk of diameter being 12.0cm, 19.5cm, and 50.0cm, fitted with liquid distributors of straight or circular tubes. In the process for preparing silver nanoparticles under the appropriate operating conditions, the effects of the disk size and liquid distributors were not observed on the silver particle size with the size, which was around 10nm. In addition, when the reactant flow rate varied from 0.3 to 5.0 L/min, the particle size remained quite constant. In the process for preparing drug particles, when increasing spinning disk diameter and using circular liquid distributors, the drug particles size could be reduced to micro or submicron level. On the other hand, the particle size of drug increased with increasing reactant flow rate due to the poor mixing efficiency. Therefore, the suitable reactant flow rate was between 0.25 L/min and 0.50 L/min. The size and crystalline intensity of the recrystallized drug were lower compared to that of the commercial drug, and thus the dissolution rate was enhanced. The silver particles synthetized by the chemical reaction method were smaller than 10nm and the production rate was 31kg with the yield of 40.1%. The PAS drug particles prepared by the neutralization method were reduced to submicron level and the production rate was 23kg with the yield of 54.0%. The GBM drug particles prepared by the neutralization method were around 1μm and the production rate was 1.8kg with the yield of 92.6%.
Subjects
high-gravity technique, spinning disk reactor, precipitation method, continuous operation, silver nanoparticles, low solubility drugs, and scale up.
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-100-D95524001-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):2882bb2d772f8e50dc3f30ca24a864a3

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science