Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Materials Science and Engineering / 材料科學與工程學系
  4. Triphenylamine (TPA)-Functionalized Structural Isomeric Polythiophenes as Dopant Free Hole-Transporting Materials for Tin Perovskite Solar Cells
 
  • Details

Triphenylamine (TPA)-Functionalized Structural Isomeric Polythiophenes as Dopant Free Hole-Transporting Materials for Tin Perovskite Solar Cells

Journal
Advanced Energy Materials
Date Issued
2023-01-01
Author(s)
Balasaravanan, Rajendiran
Kuan, Chun Hsiao
Hsu, Shih Min
Chang, En Chi
Chen, Yu Cheng
Tsai, Yi Tai
Jhou, Meng Li
Yau, Shueh Lin
CHENG-LIANG LIU  
Chen, Ming Chou
Diau, Eric Wei Guang
DOI
10.1002/aenm.202302047
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/635492
URL
https://api.elsevier.com/content/abstract/scopus_id/85168581210
Abstract
A new series of triphenylamine (TPA)-functionalized isomeric polythiophenes are developed as hole transporting materials (HTM) for inverted tin-based perovskite solar cells (TPSCs). Bithiophene (BT) is first functionalized with two TPA (electron donor; D) at 3 and 5 positions to give two structural isomeric compounds (3BT2D and 5BT2D). The functionalized BT2Ds are then coupled with 3,3′-bis(tetradecylthio)-2,2′-bithiophene (SBT-14)/3,3′-ditetradecyl-2,2′-bithiophene (BT-14) to produce structural isomeric polythiophenes (1-4), which are compared to conventional poly[N,N″-bis(4-butylphenyl)-N,N″-bis(phenyl)-benzidine] (poly-TPD) as HTMs for TPSCs. With the appropriate alignment of energy levels with regard to the perovskite layer, the TPA-functionalized polymers-based TPSCs exhibit enhanced operational stability and efficiency. Moreover, the long thiotetradecyl chain in SBT-14 with intramolecular S(alkyl)∙∙∙S(thio) interactions restricts the molecular rotation and has a strong impact on the molecular solubility and wettability of the film during device fabrication. Among all the polymers studied, TPSCs fabricated with 3-SBT-BT2D polymer exhibit the highest hole mobility as well as the slowest charge recombination and achieve the highest power conversion efficiency of 8.6%, with great long-term stability for the performance retaining ≈90% of its initial values for shelf storage over 4000 h, which is the best efficiency for non-PEDOT:PSS-based TPSCs ever reported.
Subjects
polymeric hole transporting materials | power conversion efficiency | thioalkylated bithiophenes | tin perovskite solar cells | triphenylamine
SDGs

[SDGs]SDG7

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science