Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Biomedical Electronics and Bioinformatics / 生醫電子與資訊學研究所
  4. Automatic International Classification of Diseases Coding System: Deep Contextualized Language Model With Rule-Based Approaches
 
  • Details

Automatic International Classification of Diseases Coding System: Deep Contextualized Language Model With Rule-Based Approaches

Journal
JMIR Medical Informatics
Journal Volume
10
Journal Issue
6
Date Issued
2022-06-01
Author(s)
Chen, Pei Fu
Chen, Kuan Chih
WEI-CHIH LIAO  
FEI-PEI LAI  
He, Tai Liang
Lin, Sheng Che
WEI-JEN CHEN
Yang, Chi Yu
Lin, Yu Cheng
Tsai, I. Chang
Chiu, Chi Hao
Chang, Shu Chih
Hung, Fang Ming
DOI
10.2196/37557
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/630958
URL
https://api.elsevier.com/content/abstract/scopus_id/85134414734
Abstract
Background: The tenth revision of the International Classification of Diseases (ICD-10) is widely used for epidemiological research and health management. The clinical modification (CM) and procedure coding system (PCS) of ICD-10 were developed to describe more clinical details with increasing diagnosis and procedure codes and applied in disease-related groups for reimbursement. The expansion of codes made the coding time-consuming and less accurate. The state-of-the-art model using deep contextual word embeddings was used for automatic multilabel text classification of ICD-10. In addition to input discharge diagnoses (DD), the performance can be improved by appropriate preprocessing methods for the text from other document types, such as medical history, comorbidity and complication, surgical method, and special examination. Objective: This study aims to establish a contextual language model with rule-based preprocessing methods to develop the model for ICD-10 multilabel classification. Methods: We retrieved electronic health records from a medical center. We first compared different word embedding methods. Second, we compared the preprocessing methods using the best-performing embeddings. We compared biomedical bidirectional encoder representations from transformers (BioBERT), clinical generalized autoregressive pretraining for language understanding (Clinical XLNet), label tree-based attention-aware deep model for high-performance extreme multilabel text classification (AttentionXLM), and word-to-vector (Word2Vec) to predict ICD-10-CM. To compare different preprocessing methods for ICD-10-CM, we included DD, medical history, and comorbidity and complication as inputs. We compared the performance of ICD-10-CM prediction using different preprocesses, including definition training, external cause code removal, number conversion, and combination code filtering. For the ICD-10 PCS, the model was trained using different combinations of DD, surgical method, and key words of special examination. The micro F1 score and the micro area under the receiver operating characteristic curve were used to compare the model's performance with that of different preprocessing methods. Results: BioBERT had an F1 score of 0.701 and outperformed other models such as Clinical XLNet, AttentionXLM, and Word2Vec. For the ICD-10-CM, the model had an F1 score that significantly increased from 0.749 (95% CI 0.744-0.753) to 0.769 (95% CI 0.764-0.773) with the ICD-10 definition training, external cause code removal, number conversion, and combination code filter. For the ICD-10-PCS, the model had an F1 score that significantly increased from 0.670 (95% CI 0.663-0.678) to 0.726 (95% CI 0.719-0.732) with a combination of discharge diagnoses, surgical methods, and key words of special examination. With our preprocessing methods, the model had the highest area under the receiver operating characteristic curve of 0.853 (95% CI 0.849-0.855) and 0.831 (95% CI 0.827-0.834) for ICD-10-CM and ICD-10-PCS, respectively. Conclusions: The performance of our model with the pretrained contextualized language model and rule-based preprocessing method is better than that of the state-of-the-art model for ICD-10-CM or ICD-10-PCS. This study highlights the importance of rule-based preprocessing methods based on coder coding rules.
Subjects
algorithm | coding system | data mining | deep learning | electronic health record | International Classification of Diseases | medical records | multilabel text classification | natural language processing
Publisher
JMIR PUBLICATIONS, INC
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science