Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. When Do Quantum Mechanical Descriptors Help Graph Neural Networks to Predict Chemical Properties?
 
  • Details

When Do Quantum Mechanical Descriptors Help Graph Neural Networks to Predict Chemical Properties?

Journal
Journal of the American Chemical Society
Journal Volume
146
Journal Issue
33
Start Page
23103
End Page
23120
ISSN
0002-7863
1520-5126
Date Issued
2024-08-06
Author(s)
Shih-Cheng Li
Haoyang Wu
Angiras Menon
Kevin A. Spiekermann
YI-PEI LI  
William H. Green
DOI
10.1021/jacs.4c04670
DOI
10.1021/jacs.4c04670
URI
https://www.scopus.com/record/display.uri?eid=2-s2.0-85200919445&origin=resultslist
https://scholars.lib.ntu.edu.tw/handle/123456789/720400
Abstract
Deep graph neural networks are extensively utilized to predict chemical reactivity and molecular properties. However, because of the complexity of chemical space, such models often have difficulty extrapolating beyond the chemistry contained in the training set. Augmenting the model with quantum mechanical (QM) descriptors is anticipated to improve its generalizability. However, obtaining QM descriptors often requires CPU-intensive computational chemistry calculations. To identify when QM descriptors help graph neural networks predict chemical properties, we conduct a systematic investigation of the impact of atom, bond, and molecular QM descriptors on the performance of directed message passing neural networks (D-MPNNs) for predicting 16 molecular properties. The analysis surveys computational and experimental targets, as well as classification and regression tasks, and varied data set sizes from several hundred to hundreds of thousands of data points. Our results indicate that QM descriptors are mostly beneficial for D-MPNN performance on small data sets, provided that the descriptors correlate well with the targets and can be readily computed with high accuracy. Otherwise, using QM descriptors can add cost without benefit or even introduce unwanted noise that can degrade model performance. Strategic integration of QM descriptors with D-MPNN unlocks potential for physics-informed, data-efficient modeling with some interpretability that can streamline de novo drug and material designs. To facilitate the use of QM descriptors in machine learning workflows for chemistry, we provide a set of guidelines regarding when and how to best leverage QM descriptors, a high-throughput workflow to compute them, and an enhancement to Chemprop, a widely adopted open-source D-MPNN implementation for chemical property prediction.
Publisher
American Chemical Society (ACS)
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science