Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. A faster exact schedulability analysis for fixed-priority scheduling
 
  • Details

A faster exact schedulability analysis for fixed-priority scheduling

Journal
Journal of Systems and Software
Journal Volume
79
Journal Issue
12
Pages
1744-1753
Date Issued
2006
Author(s)
Hsieh, Jen-Wei
Shih, Wei-Kuan
TEI-WEI KUO  
WAN-CHEN LU  
DOI
10.1016/j.jss.2006.03.023
URI
http://www.scopus.com/inward/record.url?eid=2-s2.0-33750942274&partnerID=MN8TOARS
http://scholars.lib.ntu.edu.tw/handle/123456789/323645
Abstract
Real-time scheduling for task sets has been studied, and the corresponding schedulability analysis has been developed. Due to the considerable overheads required to precisely analyze the schedulability of a task set (referred to as exact schedulability analysis), the trade-off between precision and efficiency is widely studied. Many efficient but imprecise (i.e., sufficient but not necessary) analyses are discussed in the literature. However, how to precisely and efficiently analyze the schedulability of task sets remains an important issue. The Audsley's Algorithm was shown to be effective in exact schedulability analysis for task sets under rate-monotonic scheduling (one of the optimal fixed-priority scheduling algorithms). This paper focuses on reducing the runtime overhead of the Audsley's Algorithm. By properly partitioning a task set into two subsets and differently treating these two subsets during each iteration, the number of iterations required for analyzing the schedulability of the task set can be significantly reduced. The capability of the proposed algorithm was evaluated and compared to related works, which revealed up to a 55.5% saving in the runtime overhead for the Audsley's Algorithm when the system was under a heavy load. © 2006 Elsevier Inc. All rights reserved.
Subjects
Fixed-priority preemptive scheduling; Periodic tasks; Real-time systems; Schedulability analysis
Other Subjects
Algorithms; Iterative methods; Scheduling; Set theory; Fixed-priority preemptive scheduling; Schedulability analysis; Real time systems
Type
journal article
File(s)
Loading...
Thumbnail Image
Name

23.pdf

Size

222.03 KB

Format

Adobe PDF

Checksum

(MD5):2b905ec9dc08e992235742167a0418f5

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science