Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Partial threading of pedicle screws in a standard construct increases fatigue life: A biomechanical analysis
 
  • Details

Partial threading of pedicle screws in a standard construct increases fatigue life: A biomechanical analysis

Journal
Applied Sciences (Switzerland)
Journal Volume
11
Journal Issue
4
Date Issued
2021-02-02
Author(s)
FON-YIH TSUANG  
Chen, Chia Hsien
Wu, Lien Chen
Kuo, Yi Jie
Hsieh, Yueh Ying
Chiang, Chang Jung
DOI
10.3390/app11041503
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/561786
URL
https://scholars.lib.ntu.edu.tw/handle/123456789/554290
Abstract
This study proposed a pedicle screw design where the proximal 1/3 of the screw is unthreaded to improve fixation in posterior spinal surgery. This design was also expected to reduce the incidence of mechanical failure often observed when an unsupported screw length is exposed outside the vertebra in deformed or degenerated segments. The aim of this study was to evaluate the fatigue life of the novel pedicle screw design using finite element analysis and mechanical testing in a synthetic spinal construct in accordance with American Society for Testing and Materials (ASTM) F1717. The following setups were evaluated: (i) pedicle screw fully inserted into the test block (EXP-FT-01 and EXP-PU-01; full thread (FT), proximal unthread (PU)) and (ii) pedicle screw inserted but leaving an exposed shaft length of 7.6 mm (EXP-FT-02 and EXP-PU-02). Corresponding finite element models FEM-FT-01, FEM-FT-02, FEM-PU-01, and FEM-PU-02 were also constructed and subjected to the same loading conditions as the experimental groups. The results showed that under a 220 N axial load, the EXP-PU-01 group survived the full 5 million cycles, the EXP-PU-02 group failed at 4.4 million cycles on average, and both EXP-FT-01 and EXP-FT-02 groups failed after less than 1.0 million cycles on average, while the fatigue strength of the EXP-FT-02 group was the lowest at 170 N. The EXP-FT-01 and EXP-FT-02 constructs failed through fracture of the pedicle screw, but a rod fractured in the EXP-PU-02 group. In comparison to the FEM-FT-01 model, the maximum von Mises stress on the pedicle screw in the FEM-PU-01 and FEM-PU-02 models decreased by -43% and -27%, respectively. In conclusion, this study showed that having the proximal 1/3 of the pedicle screw unthreaded can reduce the risk of screw fatigue failure when used in deformed or degenerated segments.
Subjects
Biomechanical analysis | Fatigue life | Partial threading | Pedicle screws | Spinal fixation
SDGs

[SDGs]SDG3

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science