Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Biomedical Engineering / 醫學工程學系
  4. Effects of Laminae Expansion on Cervical Stability and Spinal Nerve Tension after open-door Laminoplasty
 
  • Details

Effects of Laminae Expansion on Cervical Stability and Spinal Nerve Tension after open-door Laminoplasty

Date Issued
2012
Date
2012
Author(s)
Tu, Chun-Ming
URI
http://ntur.lib.ntu.edu.tw//handle/246246/254732
Abstract
Objective: To investigate the effect of lamina open angle on the cervical stability and nerve root tension during expansion open-door laminoplasty (EOLP). Introduction: Multilevel cervical radiculomyelopathy is often treated with cervical laminectomy and fusion (CLF) or EOLP. For the CLF surgery, spinous process, laminae and surrounding ligaments of surgery level are removed to decrease compressive stress on spinal cord. However, the rigid fixation constrains movement of cervical spine, and the compensational range of motion (ROM) at adjacent level often leads to early disc degeneration. For the EOLP surgery, most of posterior elements of surgery levels are reserved. The procedures of EOLP begins with the opening of lamina at nerve compression side and creating a hinge groove at the contralateral side. The lamina were then flipped to release the pressure on spinal cord. There is no standard for the lamina open angle yet. Larger lamina open angle can better decompress the spinal cord and prevent myeloradiculopathy recurrence. However, the larger open angle may also increase the risk of C5 palsy. Posterior intersegmental ligaments above the surgery level, e.g., the supraspinous ligaments, interspinous ligaments and ligamentum flavum, are dissected for the easier operation of laminae expansion, especially for wider laminae expansion. However, the effect of ligament preservation on spinal stability remains unclear. The propose of this study is to find the suitable lamina open angle that can sufficiently decompresses spinal cord without causing C5 palsy and the effect of ligament preservation on cervical spine stability after EOLP and CLF surgeries. Material and Methods: (a) Threshold of C5 nerve-root overstretching. A displacement-controlled tensile test was performed at a speed of 5 mm/min to find the toe region of C5 nerve roots. Toe region is defined as the initial segment of force-deformation curve, where the deformation does not linearly increase with the applied force due to the laxity nature of biological tissue. (b) Safety margin of lamina open degree. Eight C5 vertebrae with preservation of spinal cord and nerve roots were dissected from 6-month-old pigs, and applied with 50% cervical stenosis simulation by inserting the silicon blocks into spinal canal. The cross-sectional area of spinal cord and nerve root deformation during lamina opening were measured pre and post the artificial stenosis. The suitable lamina open degree was estimated by overlapping the open angles which the decompression of spinal cord is more than 30% and threshold of nerve-root overstretching found from the results of protocol (a). (c) Evaluation of cervical stability after EOLP and CLF. Eight multilevel cervical spines (C3-C7) were dissected from 6-month old pigs. Intact specimens were applied with 2 Nm pure moment in flexion, extension, and lateral bending. Thereafter, the C4-C6 of specimens were sequentially applied with EOLP of 30-degree laminae opening with C3-4 ligaments preserved, EOLP of 30-degree laminae opening with C3-4 ligament removal, and EOLP of 45-degree laminae opening with C3-4 ligament removal and CLF. Stability tests were performed after every surgery simulations. In EOLP surgery, 30-degree laminae opening was defined as the lower limit of lamina open angle defined in Protocol (b), and the 45 degree opening was defined as upper limit for clinical practice. Light-reflection markers were inserted in each vertebra for motion tracking. The total ROM and intersegmental ROM of cervical spine were measured. Results. (a) The mean threshold of C5 nerve-root deformation was 2.01 mm. (b) The lamina open angle corresponding to the threshold of C5 nerve root deformation was 31 degree, and the lamina open angle that reaches 30% recovery of cross-sectional area of spinal cord was 27 degree. Hence, in protocol (c), the lamina open angle was 30° for narrow-opening EOLP, and 45° for wide-opening EOLP. (c) Total ROM. Among the four directions of motions, only the ROM of flexion was significantly affected by EOLP. The ROM of flexion slightly decreased after 30-degree EOLP. The removal of C3-4 posterior ligaments significantly increased ROM. The increase of laminae open angle further increased the ROM in flexion. All directions of ROMs decreased post CLF. Intersegmental ROM. After EOLPs, motions of C3-4 and C4-5 significantly altered during flexion and extension. Motions of other segments were similar to the intact level after each kinds of EOLP. During flexion, motions of C3-4 and C4-5 slightly decreased after 30-degree EOLP, significantly exceeded the intact level after excision of C3-4 intersegmental ligaments, and then remained the same after the increase of lamina open angle. Trend for intersegmental motion changing of all EOLP was similar to that in flexion. After CLF, the intersegmental ROMs of implanted segment (C4-5 & C5-6) were significantly lower than the intact level during flexion, extension and left/right lateral bending. Intersegmental ROMs of adjacent cranial segment (C3-4) and adjacent caudal segment (C6-7) significantly increased during flexion, but decreased during extension and lateral bending compared to the one in intact level. Conclusion: In this study, 30 degree lamina open angle was suggested be the range of EOLP that sufficiently decompress spinal cord and maintain cervical stability without violating C5 nerve root and compensation of adjacent intersegmental motions.
Subjects
Laminoplasty
Lamina open angle
Cervical stability
C5 palsy
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-101-R99548042-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):5a49b4cd28a5dca7973c152e8d4aa14e

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science