Single-Cell-Gap Transflective TFT-LCDs based on Vertically-Aligned LC mode
Date Issued
2006
Date
2006
Author(s)
Wu, Yui-Hung
DOI
en-US
Abstract
Our goal is to develop Single Cell Gap Transflective TFT-LCDs based on VA-Alignment modes. Transflective TFT-LCDs are more and more important with the increasing need of portable devices such as digital cameras, PDA, Laptops, and cell phones. Most portable devices use Double Cell Gap Transflective TFT-LCDs for displaying nowadays. Compared with Double Cell Gap Transflective TFT-LCDs, Single Cell Gap Transflective TFT-LCDs have several advantages such as higher yield, lower cost, and simpler manufacturing. So, we will try to design different structures for Transmittance Part and Reflective Part, respectively, on the premise that the cell gaps are the same and the alignment is vertical to match T-V curve (Transmittance versus Voltage curve) and R-V curve (Reflectance versus Voltage curve). We also use Vertically-Aligned LCs because we can achieve high CR and wider-viewing angle property, easily. Therefore, we will design different electrode pattern for Transmittance Part and Reflective Part in PVA mode (Patterned Electrode Vertical-Alignment mode) to match T-V curve and R-V curve. In addition, we try different width, height, or dielectric constant of protrusions and different spaces between protrusions with suitable cell gap for Transmittance part and Reflective Part in MVA (Multi-Domain Vertical Alignment) mode. Also, we will try VA-IPS mode (Vertical-Alignment-In-Plane-Switching mode). We can try different widths of electrode and different spaces between electrodes with suitable thicknesses of cell gap and dielectric layers. We can try the electrode pattern used in FFS mode (Fringe Field Switching), too. In the meantime, we will discuss some properties such as twist phenomenon, contrast ratio, RGB (Red, Green, and Blue) dispersion, and steady issue in our models.
Subjects
半穿透反射
液晶顯示器
垂直液晶模態
Transflective
Vertically-Aligned
LCD
VA
Type
thesis
File(s)![Thumbnail Image]()
Loading...
Name
ntu-95-R93941043-1.pdf
Size
23.31 KB
Format
Adobe PDF
Checksum
(MD5):9527f21a981c18ed70dcbd16a8c46a33